logo
Абсорбционные холодильные машины

1.4 Область применения и пример использования

Основное преимущество работающих на природном газе АБХМ - сокращение эксплуатационных расходов за счет сокращения потребления относительно дорогостоящей электрической энергии и выравнивание пиковых нагрузок на систему электроснабжения. Кроме того, использование газовых систем охлаждения позволяет повысить надежность систем климатизации, поскольку в этом случае работоспособность системы холодоснабжения меньше зависит от надежности одного-единственного источника электроснабжения, особенно в случае использования гибридных систем. Целесообразно также применение АБХМ в качестве резервного источника холодоснабжения.

Системы охлаждения, работающие на природном газе, в конечном итоге обеспечивают более полное использование топливных ресурсов, чем сопоставимые системы охлаждения, потребляющие электрическую энергию. Типичный процесс производства электрической энергии предполагает при выработке и транспортировке потери примерно 65-75 % топливных ресурсов. В то же время в газоиспользующих системах теряется всего 5-10 % топлива. Утилизация сбросной тепловой энергии еще более увеличивает рентабельность АБХМ.

АБХМ имеют также ряд конструктивных преимуществ, не относящихся к области эффективного использования топливно-энергетических ресурсов:

* Экологическая безопасность за счет отказа от использования хладагентов на основе CFC (хлорфторуглерода) и HCFC (гидрохлорфторуглерода).

* Пониженный шум при работе оборудования, отсутствие вибраций.

* Отсутствие высокого давления в системе.

* Отсутствие массивных движущихся частей.

* Высокая надежность установок.

* Низкая стоимость обслуживания.

В процессе сгорания газа в АБХМ образуется некоторое количество вредных выбросов, однако весьма незначительное, поскольку современные установки обеспечивают достаточно полное сгорание. С другой стороны, эти выбросы образуются непосредственно на месте функционирования установки, и этот фактор в некоторых случаях может являться критическим.

АБХМ прямого нагрева могут использоваться, помимо выработки охлажденной воды, и для получения горячей воды в том случае, если они оборудованы вспомогательным теплообменником и контур горячей воды оборудован необходимыми устройствами управления. Если система используется подобным образом, то, как правило, общие приведенные затраты (включая капитальные затраты, расходы на пусконаладку, эксплуатационные затраты), будут ниже, чем затраты при использовании отдельных холодильной машины и бойлера.

Относительно высокие капитальные затраты ограничивают широкое распространение АБХМ. Низкая эффективность одноступенчатых АБХМ ограничивает их конкурентоспособность, за исключением случаев использования легкодоступной сбросной тепловой энергии. Даже применение двухступенчатых АБХМ экономически оправдано не во всех ситуациях.

Еще одно ограничение применения АБХМ связано с относительно высокими затратами энергии на работу насосов. Производительность водяного насоса конденсатора в общем случае является функцией потока холодоносителя. Технологии охлаждения, отличающиеся более низким холодильным коэффициентом, обычно требуют более высокого потока холодоносителя по сравнению с технологиями, обеспечивающими более высокий холодильный коэффициент, и, соответственно, большей производительности (размеров) циркуляционного насоса. Точно так же при использовании абсорбционных холодильных машин из-за большего объема холодоносителя требуются градирни большего размера, чем при использовании холодильных машин с электроприводом компрессоров.

Рисунок 6 - Схема установки холодоснабжения с использованием тепловой энергии от сжигания отходов

Рассмотрим пример построения системы климатизации с использованием (утилизацией) тепловой энергии от сжигания отходов для абсорбционного охлаждения. Такая система была реализована в Бельгии. В данном случае была использована АБХМ мощностью 600 кВт. На рис. 7 приведена схема установки.

В состав системы климатизации первоначально входили три компрессорных холодильных машины, каждая из которых оборудована четырьмя поршневыми компрессорами. В ходе модернизации параллельно этим холодильным машинам была установлена бромистолитиевая АБХМ. Средняя холодильная нагрузка объекта составляет 321 кВт * ч, максимальная 790 кВт * ч. Поскольку мощность АБХМ превышает среднюю холодильную нагрузку, она может использоваться в течение большей части года, по расчетам примерно 80% года. При холодильной нагрузке 321 кВт * ч на абсорбционное охлаждение необходимы затраты тепловой энергии в 497 кВт * ч при холодильном коэффициенте 0,65.

В системе используется градирня производительностью 1376 кВт * ч. Для повышения эффективности установки был установлен бак-аккумулятор охлажденной воды емкостью 8000 л.

Для передачи теплоты дымовых газов промежуточному теплоносителю (воде) используется четырехрядный теплообменник из стальных оребренных труб. Теплообменник установлен в секции очистки дымовых газов с байпассированием. Байпассирование регулируется клапанами с контроллером, позволяющим путем частичного открытия клапанов поддерживать постоянную температуру теплоносителя после теплообменника выше 110°С.

В холодное время года, когда потребность в холодоснабжении невелика, перегретый дымовыми газами теплоноситель используется в качестве источника тепловой энергии для системы водяного отопления через теплообменник.

При использовании (утилизации) теплоты дымовых газов для абсорбционного охлаждения из-за более низкой температуры дымовых газов на входе вытяжного вентилятора обеспечивается дополнительная экономия электрической энергии на вращение вентилятора. Так, при утилизации 497 кВт * ч тепловой энергии дымовых газов требуемая мощность вентилятора уменьшается на 8 кВт (с 14 до 6 кВт).

Выбор мощности абсорбционной холодильной машины определялся отношением средней холодильной нагрузки к максимальной (пиковой). Если пиковая нагрузка наблюдается лишь в течение короткого периода, то абсорбционное охлаждение более экономично в случае, если оно покрывает именно среднюю холодильную нагрузку. При средней холодильной нагрузке 321 кВт * ч и при среднем холодильном коэффициенте 2,9 для компрессорных холодильных машин для снятия холодильной нагрузки требуется 110 кВт электрической мощности. При использовании (утилизации) тепловой энергии от сжигания отходов для абсорбционного охлаждения эта электрическая энергия не используется. Дополнительная экономия, как было указано выше, образуется за счет уменьшения температуры дымовых газов, при которой электрическая нагрузка вытяжного вентилятора уменьшается на 8 кВт. Однако при абсорбционном охлаждении требуется и дополнительное электроснабжение - 8,2 кВт непосредственно для обеспечения работы АБХМ, 2 кВт для вентилятора градирни, 7,8 кВт на работу циркуляционных насосов. Таким образом, чистое снижение электрической нагрузки составляет 101 кВт.

В рассматриваемом случае стоимость электрической энергии составила 2,9 бельгийских франка за 1 кВт * ч (проект был реализован до введения единой европейской валюты). Линия по сжиганию отходов функционирует семь дней в неделю в три смены (практически круглосуточно), и ее время работы в год составляет 8064 ч при коэффициенте загрузки 0,868. Таким образом, годовой экономический эффект от внедрения утилизации теплоты дымовых газов на абсорбционное охлаждение составил 2050168 бельгийских франков. Стоимость установки (капитальные затраты) составила 6830360 бельгийских франков. Период окупаемости (без учета фактора дисконтирования), таким образом, составил менее четырех лет. Однако следует отметить, что, поскольку АБХМ используется лишь для покрытия средней холодильной нагрузки, для покрытия пиковых нагрузок необходимо использовать компрессорные холодильные машины, и этот факт необходимо учитывать при оценке эффективности проекта в целом.