1.3 Эффективность абсорбционных холодильных машин
Эффективность абсорбционных холодильных машин характеризуется холодильным коэффициентом (coefficient of performance, COP), определяемым как отношение холодопроизводительности установки к затратам тепловой энергии. Одноступенчатые АБХМ характеризуются величинами холодильного коэффициента, равными 0,6-0,8 (при максимально возможном 1,0). Поскольку холодильный коэффициент установок этого типа всегда меньше единицы, одноступенчатые АБХМ целесообразно использовать в случаях, когда есть возможность утилизации тепловой энергии, например, сбросная тепловая энергия от электростанций, котлов и т.п.
Двухступенчатые АБХМ характеризуются величинами холодильного коэффициента, равными примерно 1,0 при максимально возможном 2,0. Еще не доступные для коммерческого использования прототипы трехступенчатых АБХМ характеризуются величинами холодильного коэффициента от 1,4 до 1, 6.
Эффективность традиционных компрессорных холодильных машин также характеризуется холодильным коэффициентом, однако, поскольку в них используется электрическая энергия от источника централизованного электроснабжения, необходимо учитывать эффективность выработки электрической энергии и потери ее при транспортировке. По этим причинам прямое сравнение эффективности компрессорных холодильных машин с электроприводом и эффективности газовых АБХМ некорректно. Можно сравнить холодильный коэффициент с учетом потерь при выработке энергии и ее транспортировке.
Эффективность реальных холодильных машин значительно ниже эффективности идеальной холодильной машины, во многом за счет сложных необратимых процессов, проходящих в рабочих жидкостях. Для хладагента АБХМ, помимо обычных, предъявляется ряд специфических требований, обусловленных особенностями реализации абсорбционного холодильного цикла. Среди этих требований:
* Высокая растворимость в абсорбенте при заданной рабочей температуре абсорбера.
* Низкая растворимость в абсорбенте при заданной рабочей температуре десорбера.
* Неспособность к химической реакции с абсорбентом во всем диапазоне рабочих температур.
- Введение
- 1. Теоретическая часть
- 1.1 История создания абсорбционных холодильных машин
- 1.2 Классификация абсорбционных холодильных машин
- 1.2.1 Одноступенчатые абсорбционные холодильные машины
- 1.2.2 Двухступенчатые абсорбционные холодильные машины
- 1.2.3 Трехступенчатые абсорбционные холодильные машины
- 1.2.4 Гибридные системы
- 1.3 Эффективность абсорбционных холодильных машин
- 1.4 Область применения и пример использования
- 2. Расчётная часть
- 2.1 Термодинамический расчёт цикла
- 2.2 Тепловой расчёт генератора
- 2.4 Гидравлический расчет тракта подачи исходной смеси в генератор
- 3. Патентный обзор
- 3.1 Абсорбционная холодильная машина (патент РФ №2224189)
- Абсорбционная холодильная машина: принцип работы
- 7.1 Абсорбционные холодильные машины
- 4.2. Абсорбционные холодильные машины
- 4.4.5 Абсорбционная холодильная машина
- Абсорбционные холодильные машины
- Абсорбционные холодильные машины
- Абсорбционная холодильная машина: принцип работы
- § 1. Абсорбционные холодильные машины