78.Абсорбционная холодильная установка
Иногда для осуществления цикла холодильной машины целесообразнее расходовать не механическую работу, как это было в рассмотренных типах холодильных машин, а теплоту, отбираемую, к примеру, от уходящих продуктов сгорания газотурбинных установок. Холодильные машины, в которых для понижения температуры тел до температуры ниже температуры окружающей среды используется теплота отработавших продуктов сгорания, называются абсорбционными холодильными установками (рис. 42).
Абсорбционные холодильные установки используют в качестве рабочего тела хладоагенты и их растворы. В качестве хладагента в абсорбционных холодильных установках может быть использован аммиак, а в качестве растворителя (абсорбента) – вода.
Рис. 42. Схема и идеализированная T-s диаграмма абсорбционной холодильной установки
Схема абсорбционной установки показана на рис. 42. В генераторе (1) к водоаммиачному раствору подводится теплота от внешнего источника (отработавшие продукты сгорания) при давлении . Подводимая теплота qг идет на испарение рабочего тела: в этом процессе образуется пар с высокой концентрацией аммиака и с температурой . Пар из генератора (1) поступает в конденсатор (2), где конденсируется при температуре T5, передавая теплоту охлаждающей воде qк.
Конденсат проходит через дроссельный вентиль (3), на выходе из которого рабочее тело имеет давление p2 и температуру T6 , значение которой меньше, чем температура в холодильной камере. В испарителе (4) раствор испаряется за счет подвода теплоты q0 от охлаждаемого объема (5). Из испарителя пар поступает в абсорбер (6), где поглощается при температуре T3 абсорбером, поступающим из генератора через вентиль (8), отдавая теплоту абсорбции qа охлаждающей воде, проходящей через змеевик. Вследствие поглощения пара, концентрация хладагента (аммиака) в растворе повышается. Насосом (7) раствор из абсорбера (6) подается в генератор.
При идеализации работы цикла рассматриваемой установки (полная обратимость процессов, полное выпаривание хладагента из абсорбера) рабочий процесс в ней можно представить в виде совокупности прямого (1-2-3-4) и обратного (5-6-7-8) циклов Карно. Эффективность работы абсорбционной машины можно оценить тепловым коэффициентом
.
Следовательно, чем больше отбирается удельной теплоты от охлаждаемого объема при фиксированном количестве подведенной теплоты в генераторе, тем выше экономичность холодильной установки. Действительный цикл абсорбционной холодильной установки характеризуется необратимостью процессов, что приводит к некоторому снижению теплового коэффициента абсорбционной холодильной машины .
- 1. Основные определения и понятия термодинамики
- 2. Параметры состояния и уравнения состояния.
- 3.Термодинамическая работа, координаты p-V
- 4. Потенциальная (техническая) работа
- 5. Теплоемкость. Определение теплоемкости веществ.
- Вопрос 8. Определение температуры смеси. Теплоемкость смеси
- Вопрос 9. Термодинамические условия фазовых переходов.
- Вопрос 10. Критические параметры чистого вещества и смесей.
- Вопрос 11. Теория соответственных состояний. Коэффициент сжимаемости.
- 13. Аналитическое выражение первого начала термодинамики
- 14. Первое начало термодинамики для идеального газа.
- 1 5. Принцип существования энтропии идеального газа.
- 31. Теплопроводность. Закон Фурье. Коэффициент теплопроводности
- 32. Дифференциальное уравнение теплопроводности. Условия однозначности
- 39. Теплообмен излучением. Основные законы.
- 40. Теплообмен излучением между телами.
- 42. Сложный теплообмен (теплопередача)
- 43. Теплопередача. Основное уравнение теплопередачи. Коэффициент теплопередачи.
- 44. Теплопередача через плоскую однослойную и многослойную плоскую стенку
- 45. Теплопередача через криволинейные однослойные и многослойные стенки.
- 48. Теплопередача при переменных температурах. Средняя разность температур.
- 49. Тепловой баланс теплообменного аппарата и частные случаи.
- 50.Средняя разность температур для сложных схем теплообмена
- 51.Обобщенные уравнения теплопередачи при переменных температурах
- 52. Расчет теплообменный аппаратов первого рода.
- 53. Расчет теплообменный аппаратов второго рода.
- 54. Круговые процессы. Кпд и холодильный коэффициент.
- 55. Обратимый цикл Карно.
- 56. Математическое выражение второго начала термостатики. Основные следствия.
- 57. Математическое выражение второго начала термодинамики. Основные следствия.
- 58. Истечение жидкостей и газов. Основные расчётные соотношения.
- 59.Особенности истечения сжимаемой жидкости. Кризис истечения. Режимы истечения.
- 60.Переход через критическую скорость (сопло Лаваля).
- 61. Особенности истечения через каналы переменного сечения, сопло и диффузор.
- 62. Дросселирование. Эффект Джоуля-Томсона. Основные понятия
- 63. Процессы парообразования, определение параметров насушенного пара, диаграмма h-s.
- 64.Классификация гту:
- 72. Паросиловые установки, цикл Ренкина, методы повышения кпд.
- 73.Схема,рабочий процесс и цикл паросиловой установки с промежуточным перегревом
- 74.Схема,рабочий процесс и цикл паросиловой установки с регенерацией
- 76.Рабочий процесс парокомпрессионной холодильной установки:
- 77. Воздушные холодильные машины.
- 78.Абсорбционная холодильная установка
- 79.Схема,рабочий процесс и цикл теплового насоса
- 82. Индикаторные и эффективные характеристики двигателей внутреннего сгорания