8.2.3.Уравнение движения двухфазного потока в трубах.
Для описания течения двухфазного потока (пароводяной смеси) используются две модели.
В модели гомогенного потока принимается, что обе фазы (жидкая и паровая) распределены равномерно и непрерывно одна в другой, при этом скорости их движения и температуры одинаковы. Другими словами, в гомогенном представлении движение двухфазного потока рассматривается как течение однородной сплошной среды. Полученные при этом параметры и характеристики потока называются расходными.
Вторая модель рассматривает двухфазный (гетерогенный) поток как систему из двух фаз, разделенных межфазными границами, движущихся с разными скоростями. Уравнения записываются отдельно для жидкой и паровой фазы. Начальные и граничные условия также записываются отдельно для фаз, при этом учитывается, что на границах раздела фаз имеют место механическое взаимодействие, массообмен и переток теплоты.
Параметры, характеризующие движение каждой из фаз в отдельности или поток в целом (с учетом движения отдельных фаз), называются истинными параметрами.
В инженерных расчетах за основу расчета двухфазных потоков принимается модель гомогенного потока, по которой определяются расходные параметры, а по ним рассчитываются истинные параметры с привлечением экспериментальных данных, устанавливающих зависимости между расходными и истинными параметрами двухфазного потока.
Соотношения между расходными и истинными параметрами двухфазного потока имеют сложный характер и зависят от структуры потока и распределения скоростей фаз.
Структура двухфазного потокапоказывает объемное содержание паровой и жидкой фазы, их границы, распределение по сечению трубы. По мере нагрева (охлаждения) потока массовые и объемные доли фаз изменяются, что сказывается на структуре потока и скоростях фаз. Предельными случаями являются однофазные потоки жидкости (масса пара равна нулю) и пара (жидкость отсутствует). Между этими крайними случаями можно выделить ряд устойчивых сочетаний структуры потока и скорости фаз, характеризуемыхрежимами течения двухфазных потоков. Каждому режиму течения можно соотнести свои зависимости между расходными и истинными параметрами двухфазного потока.
Рассмотрим участок обогреваемой трубы длиной l(рис. 8.5). Плотность теплового потока q1, кВт/м, постоянна по длине трубы. На вход в трубу подается вода с расходом G0, кг/с, и энтальпией h0, кДж/кг.
На экономайзерном участке lЭКпроисходит нагрев воды до температуры кипения ts(энтальпия воды на линии насыщения h). Давление потока р на рассматриваемом участке считаем постоянным (перепад давления мал). В гомогенном потоке фазы находятся в термодинамическом равновесии. При энтальпии потока h > h' начнется образование паровой фазы. Массовый расход паровой фазы обозначим D, кг/с, а расход жидкой фазы (воды) GВ, кг/с. В сечении z суммарный расход паровой и жидкой фаз G равен
G = D + GВ.
По уравнению неразрывности (условие сплошности)
G = G0= const.
Суммарно количество теплоты, переносимое двухфазным потоком через сечение z
(8.30) |
где h"- энтальпия пара на линии насыщения, кДж/кг; r - скрытая теплота парообразования, кДж/кг; hСМ- энтальпия пароводяной смеси.
Отсюда
(8.31) |
Величина x представляет собой расходное массовое паросодержание и характеризует долю пара в массовом расходе смеси
x = D / G. | (8.32) |
Тогда расходное массовое содержаниежидкости будет равно
1 - x = GВ/ G. | (8.33) |
Для равновесного двухфазного потока
(8.34) |
Величину x называют относительной энтальпией потока. Для жидкости, недогретой до ts получается x < 0; для жидкости на линии насыщения x = 0, для пара на линии насыщения x = 1; для перегретого пара x > 1.
По уравнению энергии (8.21) в сечении z
(8.35) |
При этом величина
(8.36) |
Длину экономайзерного участка lЭКможно определить, записав для него уравнение энергии (в виде теплового баланса)
(8.37) |
Отсюда
(8.38) |
где Δhнед= h' - h0- недогрев воды на входе в трубу до энтальпии кипения.
Подставляем lЭКв выражение для x (8.36)
(8.39) |
или
Полученные формулы дают возможность в любом сечении трубы определить массовое паросодержание , массовый расход пара (xG0) и воды (1 - x)G0.
По массовым расходам пара и воды можно определить расходные скоростные характеристикидвухфазного потока:
приведенные скорости жидкой и паровой фаз - скорости, которые имели бы жидкость и пар, если бы только жидкость или только пар занимали все сечение f трубы
(8.40) |
где ρ', ρ" - плотность воды и пара на линии насыщения, кг/м3;
скорость циркуляции - скорость, которую имел бы поток, если бы его плотность была равна плотности воды на линии насыщения:
w0= G / fρ'; | (8.41) |
скорость воды на входе в трубу
wВХ= G / fρВХ, | (8.42) |
где ρВХ- плотность воды на входе в трубу;
скорость пароводяной смеси
wСМ= G / fρСМ, | (8.43) |
где ρСМ- плотность пароводяной смеси.
С учетом введенных понятий о скоростях уравнение неразрывности можно записать в виде
(8.44) |
Из этого равенства можно определить искомую скорость через любую известную.
По длине трубы приведенные скорости воды и пара изменяются. Какое между ними соотношение? В сечении z массовый расход смеси G = D + GВпредставим через скорости w0, w'0и w"0
w0r'f = w''0r''f + w'0r'f.
Отсюда
(8.45) |
Получается, что хотя w'0и w''0изменяются по длине канала (w'0уменьшается, a w''0- растет), но сумма w'0и w''0ρ'' / ρ' постоянна и равна скорости циркуляции.
По массовым расходам жидкости GВи пара D можно рассчитать объемные расходы жидкости VВи пара VП, м3/c:
(8.46) |
В гомогенном потоке скорости фаз равны, поэтому объемный расход Vсм=Gсм/ρсм.
- 1. Классификация и типы паровых котлов.
- 1.1. Паровой котел. Общее устройство и определения.
- 3.3. Общие технические характеристики топлив.
- 3.5.1. Характеристики твердого топлива.
- 3.5.2. Характеристики мазута.
- 3.5.3. Характеристики природного газа.
- 3.6.1. Размолоспособность топлива.
- 3.6.2. Тонкость размола пыли.
- 3.6.3. Затраты энергии на размол топлива.
- 3.6.4. Характеристика угольной пыли.
- 4.1. Основы кинетики химических реакций.
- 4.2.1. Горение газового топлива
- 4.2.2. Горение твердого топлива.
- 4.2.3. Горение жидкого топлива.
- 4.3. Развитие и воспламенение топливно-воздушной струи в топочном объеме.
- 4.4. Продукты сгорания топлива.
- 5.1. Введение.
- 5.2. Топочные камеры и горелки для сжигания твердых топлив.
- 5.3. Газомазутные топки и горелки.
- 6. Эффективность работы и основы теплового расчета котла.
- 6.1. Общее уравнение теплового баланса котла.
- 6.2. Коэффициент полезного действия парового котла и котельной установки.
- 6.3.1. Потери теплоты с уходящими газами.
- 6.3.2. Потери теплоты с химическим недожогом топлива.
- 6.3.3. Потери теплоты с механическим недожогом топлива.
- 6.3.4. Потери теплоты от наружного охлаждения.
- 6.3.5. Потери с физической теплотой удаляемых шлаков.
- 6.3.6. Оптимизация показателей работы парового котла по сумме тепловых потерь.
- 7. Эксплуатация паровых котлов.
- 7.1. Эксплуатационные режимы паровых котлов.
- 7.2. Статические характеристики парового котла в нерасчетных режимах работы.
- 7.3. Переходные процессы в котле при изменении нагрузки.
- 7.4.Регулирование температуры пара.
- 7.4.1. Методы парового регулирования температуры пара.
- 7.4.2. Методы газового регулирования.
- 7.5. Загрязнения и абразивный износ конвективных поверхностей нагрева.
- 7.6.1. Высокотемпературная коррозия.
- 7.6.2. Низкотемпературная коррозия.
- 7.7. Сокращение вредных выбросов в окружающую среду.
- 8.Характеристики и виды движения водного теплоносителя в паровых котлах
- 8.1.Водный теплоноситель в паровых котлах и его физико-химические характеристики.
- 8.2 Общие уравнения движения жидкости в трубах.
- 8.2.1.Уравнения неразрывности, движения, энергии и состояния жидкости.
- 8.2.2.Уравнение движения однофазного потока в трубах.
- 8.2.3.Уравнение движения двухфазного потока в трубах.
- 8.3.Режимы течения двухфазного потока.
- 8.4.Перепад давления при движении рабочей среды в трубе.
- 8.5.Виды движения жидкости.
- 9.Гидродинамика водного теплоносителя в паровых котлах.
- 9.1.Гидродинамика водного теплоносителя в поверхностях с принудительным движением.
- 9.1.1.Теплогидравлические характеристики поверхностей нагрева парового котла.
- 9.1.2.Гидравлическая характеристика горизонтальных одиночных труб.
- 9.1.3.Гидравлические характеристики вертикальных одиночных труб.
- 9.1.4.Гидравлические характеристики системы труб парового котла.
- 9.1.5.Гидравлическая разверка в системе труб парового котла.
- 9.1.6.Пульсация потока в системах труб парового котла.
- 9.2.Гидродинамика водного теплоносителя при естественной циркуляции.
- 9.2.1.Движущий и полезный напоры контура циркуляции.
- 9.2.2.Гидравлические характеристики контура циркуляции.
- 9.2.3.Расчет контуров циркуляции.
- 9.2.4.Показатели надежности работы контура циркуляции.
- 9.3. Организация сепарации влаги и пара в барабанных котлах.
- 9.3.1.Барабан - сепарационное устройство барабанного котла.
- 9.3.2.Гидродинамические процессы в барабане парового котла.
- 10. Температурный режим поверхностей нагрева паровых котлов.
- 10.1.Металл паровых котлов.
- 10.2.Расчет температурного режима обогреваемых труб парового котла.
- 10.3.Условия теплообмена на стенке прямолинейной части трубы парового котла.
- 10.3.1.Теплообмен при докритическом давлении водного теплоносителя.
- 10.3.2.Теплообмен при сверхкритическом давлении водного теплоносителя.
- 10.4.Особенности температурного режима горизонтальных труб, криволинейных труб и каналов и газоплотных экранов.
- 10.5.Влияние внутритрубных отложений на температурный режим обогреваемых труб парового котла.
- 11.Физико-химические процессы в пароводяном тракте парового котла.
- 11.1.Материальный баланс примесей в пароводяном тракте парового котла.
- 11.2.Коррозия металла в пароводяном тракте парового котла.
- 11.3.Растворимость примесей в водном теплоносителе.
- 11.4.Переход примесей из воды в насыщенный пар.
- 11.5.Внутритрубные отложения примесей водного теплоносителя.
- 11.6.Образование отложений примесей в пароводяном тракте прямоточного котла.
- 11.7.Образование отложений примесей в пароводяном тракте барабанного котла.
- 11.7.1.Удаление примесей с непрерывной продувкой воды из водяного тракта барабанного котла.
- 11.7.2.Организация ступенчатого испарения в барабанном котле.
- 12.Водно-химические режимы паровых котлов.
- 12.1.Водно-химические режимы и нормы качества пара и питательной воды.
- 12.2.Водно-химические режимы прямоточных котлов.
- 12.3.Водно-химические режимы барабанных котлов.
- 12.4.Влияние внутрибарабанных устройств на качество котловой воды и насыщенного пара.
- 12.5.Химические очистки паровых котлов.
- 12.6.Консервация паровых котлов.