4.1. Расчет насадочных абсорберов
Целью расчета насадочных абсорберов является: определение диаметра (сечения) аппарата; определение высоты насадки (а также нахождение высоты аппарата); определение гидравлического сопротивления аппарата.
Расчеты характеристик насадочных абсорберов выполняют в следующем порядке.
1. Определяют количество ингредиентов отбросных газов, составляют материальный баланс, определяют начальные и конечные концентрации загрязнителей в обеих фазах, расход поглотителя.
2. Строят графики равновесной и рабочей линии процесса, для чего вначале концентрации улавливаемого вещества выражают в долях от количества постоянных компонентов - инертной части газового потока по газовой фазе и чистого поглотителя по жидкой фазе. Затем по опытным данным строят равновесную и рабочую линии процесса абсорбции.
В состоянии равновесия в каждом конкретном случае существует строго определенная зависимость между концентрациями распределяемого вещества, которая при равновесии системы называется равновесной.
Очевидно, что любой концентрации X соответствует равновесная концентрация Y*, и наоборот, любой концентрации Y соответствует равновесная концентрация Х*, т.е.
В состоянии равновесия при условии постоянства температуры и общего давления зависимость между концентрациями распределяемого в газовой и жидкой фазах компонента будет однозначной. Эта зависимость выражается законом Генри: при постоянной температуре парциальное давление растворенного газа пропорционально его молярной доли в растворе:
или растворимость газа в жидкости при данной температуре пропорционально его парциальному давлению над жидкостью:
,
где E - коэффициент пропорциональности называемый константой Генри; pA* - парциальное давление поглощаемого газа, находящегося в равновесии с раствором, имеющим концентрацию xA (в мол. долях); xA* - концентрация газов в растворе (в мол. долях), равновесная с газовой фазой, в которой парциальное давление поглощаемого компонента равно pA.
Рис. 19. Колонна с колпачковыми тарелками.
|
Рис. 20. Колонна с ситчатыми тарелками (с двумя зонами контакта фаз).
|
Рис. 21. Колонна с ситчато-клапанными тарелками.
При отсутствии опытных данных можно составить уравнение равновесного распределения поглощаемого компонента в жидкой и газовой фазах по давлению насыщенного пара этого вещества, считая разбавленные растворы идеальными и подчиняющимися закону Рауля. Например, известно, что упругость паров толуола при 20°С составляет около 3000 Па. Отсюда равновесную концентрацию толуола в газовой фазе у* можно приближенно находить по его содержанию в жидкой фазе х из соотношения:
у* = (3.103/1,01.105)x = 0,0296.x,
где у и х выражены в мольных долях.
3. Определяют движущую силу массопередачи. Движущие силы подсчитывают по концентрациям загрязнителей в газовой и жидкой фазах на входе в абсорбер и выходе из него как разность между действительной концентрацией загрязнителя в рассматриваемой фазе и равновесной с контактирующей фазой (последнюю находят по линии равновесия или по конкретному уравнению линии равновесия).
Средние движущие силы процесса абсорбции подсчитывают, исходя из модели идеального вытеснения, по выражению:
ΔYср = (ΔYб – ΔYм)/ln(ΔYб/ΔYм),
или
ΔXср = (ΔXб – ΔXм)/ln(ΔXб/ΔXм)
где Yб(м), Хб(м) - большие (меньшие) движущие силы процесса соответственно по газовой и жидкой фазам.
4. Определяют рабочую скорость газового потока. Тип насадки подбирают исходя из условий обеспечения достаточной площади поверхности массоотдачи, коррозионной стойкости, прочности, долговечности, приемлемого перепада давления в колонне, стоимости, других факторов.
Рабочую скорость газа w принимают в зависимости от технических, эксплуатационных, экономических и других факторов. Обычно она превышает половину скорости начала захлебывания слоя насадки.
Скорость газа при захлебывании вычисляют из уравнения
,
где w0 - скорость газового потока при захлебывании, м/с; f - удельная поверхность насадки, м2/м3; ρг - плотность газа, кг/м3; ρж - плотность жидкости, кг/м3; εс - свободный объем насадки, м3/м3; g = 9,8м/с2; μж - вязкость жидкости, мПа.с; μж - вязкость стандартной жидкости (воды), мПа.с; G, L - расход газа, жидкости, соответственно, кг/ч (кг/с); А, В - коэффициенты, принимаются в зависимости от типа насадки (приложение 5). Значения μж, ρг, ρж принимаются по параметрам среды в абсорбере.
На практике обычно работают вблизи точек подвисания. Рабочую скорость газа wг принимают в зависимости от технических, эксплуатационных, экономических и других факторов. Обычно она превышает половину скорости начала захлебывания слоя насадки:
wг = (0,75…0,9)w0. ()
- А.Г. Ветошкин защита атмосферы от газовых выбросов
- Введение
- 1. Абсорбция газовых примесей
- 2. Способы выражения составов смесей
- 3. Устройство и принцип действия абсорберов
- 3.1. Насадочные колонны
- 3.2. Тарельчатые колонны
- Расчет абсорберов
- 4.1. Расчет насадочных абсорберов
- Для пенящихся жидкостей
- Определяем диаметр абсорбера
- Данные для построения кривой равновесия
- 4.2. Расчет тарельчатых абсорберов
- Коэффициент формы прорези
- Коэффициент паровой (газовой) нагрузки прорезей капсульного колпачка
- Вспомогательный комплекс
- Коэффициент сжатия струи на выходе из отверстия
- Коэффициент истечения жидкости
- Вспомогательный комплекс а7, рассчитывают по зависимости
- Коэффициент гидравлического сопротивления сухой решетчатой тарелки
- Коэффициент неоднородности поля статических давлений
- Скорость газа в колонне
- Относительное рабочее сечение тарелки
- Удельная нагрузка по жидкости на единицу длины периметра слива
- Динамическая глубина барботажа
- Минимально допустимая скорость пара в свободном сечении тарелки
- Скорость жидкости в переливе
- Допустимая скорость жидкости в переливе
- Объемная нагрузка по газу
- Допустимая скорость газа в колонне
- Коэффициент гидравлического сопротивления сухой тарелки
- 5. Варианты заданий по абсорбции Задание №1
- Задание №2
- Задание №3
- Расчет абсорбера провести по основному уравнению массопередачи. Задание №4
- Задание №5
- Задание №6
- Задание №7
- Задание №8
- Задание №9
- Задание №10
- Задание №11
- Задание №12
- Задание №13
- Задание №14
- Задание №15
- Задание №16
- Задание №17
- Задание №18
- Задание №19
- Задание №20
- Задание №21
- Задание №22
- Задание №23
- Задание №24
- Задание №25
- Задание №26
- Задание №29
- Задание №30
- Задание №31 Тема курсового проекта: Абсорбция аммиака.
- Задание №32 Тема курсового проекта: Абсорбция паров соляной кислоты.
- Расчет абсорбера провести по основному уравнению массопередачи.
- Задание № 51
- Расчет абсорбера провести по основному уравнению массопередачи. Задание № 52
- Расчет абсорбера провести по основному уравнению массопередачи. Задание № 53
- Расчет абсорбера провести по основному уравнению массопередачи. Задание № 54
- Расчет абсорбера провести по основному уравнению массопередачи. Задание № 55
- Расчет абсорбера провести по основному уравнению массопередачи. Задание № 56
- Расчет абсорбера провести по основному уравнению массопередачи. Задание № 57
- Расчет абсорбера провести по основному уравнению массопередачи. Задание № 58
- Расчет абсорбера провести по основному уравнению массопередачи. Задание № 59
- Расчет абсорбера провести по основному уравнению массопередачи. Задание 60
- Расчет абсорбера провести по основному уравнению массопередачи. Задание 61
- Расчет абсорбера провести по основному уравнению массопередачи. Задание 62
- Расчет абсорбера провести по основному уравнению массопередачи. Задание 63
- Задание 64
- Задание 65
- 6. Адсорбционная очистка газов
- 6.1. Устройство и принцип действия адсорберов
- 6.1.1. Адсорберы периодического действия.
- 6.1.2. Адсорберы непрерывного действия.
- А) Адсорберы с движущимся слоем поглотителя
- Б) Адсорберы с псевдоожиженным слоем поглотителя
- 6.2. Расчет адсорберов периодического действия
- Число единиц переноса определяют из выражения
- Величину масштабов можно определить по формуле
- Последовательность расчета.
- Справочные и расчетные значения координат точек изотерм
- Значения параметров для графического интегрирования
- 6.3. Расчет адсорберов непрерывного действия
- А) Расчет адсорберов с движущимся слоем адсорбента.
- Б) Расчет адсорберов с кипящим (псевдоожиженным) слоем адсорбента.
- Расход адсорбента
- 7. Варианты заданий по адсорбции Задание №1
- Задание №2
- Задание №3
- Задание №4
- Задание №5
- Задание №6
- Задание № 7
- Задание № 8
- Задание №9
- Задание №10
- Задание №11
- Задание №12
- Задание №13
- Задание №14
- Задание №15
- Задание №16
- Задание №17
- Задание №18
- Задание №19
- Задание №20
- Задание №21
- Задание №22
- Задание №23
- Задание №24
- Задание № 27
- Задание № 28
- Задание № 29
- Задание № 30
- Задание № 31
- Задание № 32
- Задание № 33
- Задание № 34
- Задание № 35
- Задание № 36
- Задание № 37
- Задание № 38
- Задание № 39
- Задание № 40
- Задание № 41
- Задание № 42
- Задание № 43
- Задание № 44
- Задание № 45
- Задание № 46
- Задание № 47
- Задание № 48
- Задание № 49
- Задание № 50
- Задание № 51
- Задание № 52
- 8. Содержание и объем курсового проекта
- 8.1. Содержание и оформление расчетно-пояснительной записки
- 8.2. Общие требования по оформлению графической части проекта
- 8.3. Требования к выполнению технологической схемы.
- 8.4. Требования к выполнению чертежей общего вида аппарата
- 8.5. Требования при защите курсового проекта
- Способы выражения состава фаз
- Формулы для пересчета концентрации
- Приложение 4.
- Приложение 7.
- Технические характеристики ситчатых тарелок
- Технические характеристики ситчатых тарелок типа тс
- Продолжение табл. П.15.2.
- Длина сливных листов и патрубков
- Приложение 16.
- Приложение 18.
- Конструктивные характеристики горизонтальных и
- Физико-химические свойства веществ