1.2.8. Гидравлическое сопротивление абсорберов
Гидравлическое сопротивление Р обусловливает энергетические затраты на транспортировку газового потока через абсорбер. Величину рассчитывают по формуле [3]:
(1.25)
где – гидравлическое сопротивление сухой (не орошаемой жидкостью) насадки, Па; U – плотность орошения, м3/(м2 · с); b – коэффициент, значения которого для различных насадок приведены ниже [3]:
Насадка b Насадка b
Кольца Рашига в укладку: Кольца Палля (50 мм) 26
50 мм 173 Блоки керамические 51
80 мм 144 Седла «Инталокс»:
100 мм 119 25 мм 33
Кольца Рашига внавал: 50 мм 28
25 мм 184 Седла Берля (25 мм) 30
50 мм 169
Гидравлическое сопротивление сухой насадки определяют по уравнению:
(1.26)
где – коэффициент сопротивления.
Для хордовой насадки [10]:
(1.27)
– скорость газа в свободном сечении насадки (в м/с).
Подставив численные значения, получим:
Коэффициент сопротивления беспорядочных насадок, в которых пустоты распределены равномерно по всем направлениям (шары, седлообразная насадка), рекомендуется [3] рассчитывать по уравнению:
(1.28)
Коэффициент сопротивления беспорядочно насыпанных кольцевых насадок можно рассчитывать по формулам:
при ламинарном движении ( )
(1.29)
при турбулентном движении ( )
(1.30)
Коэффициент сопротивления регулярных насадок находят по уравнению:
(1.31)
где – коэффициент сопротивления трению; – коэффициент местного сопротивления:
Гидравлическое сопротивление орошаемой насадки Р равно:
Общее сопротивление системы абсорберов определяют с учетом гидравлического сопротивления газопроводов, соединяющих их [14].
Анализ результатов расчета насадочного абсорбера показывает, что основное диффузионное сопротивление массопереносу в этом процессе сосредоточено в жидкой фазе, поэтому можно интенсифицировать процесс абсорбции, увеличив скорость жидкости. Для этого нужно либо увеличить расход абсорбента, либо уменьшить диаметр абсорбера. Увеличение расхода абсорбента приведет к соответствующему увеличению нагрузки на систему регенерации абсорбента, что связано с существенным повышением капитальных и энергетических затрат (возрастают расходы греющего пара и размеры теплообменной аппаратуры). Уменьшение диаметра абсорбера приведет к увеличению рабочей скорости газа, что вызовет соответствующее возрастание гидравлического сопротивления абсорберов. Ниже приведены результаты расчета абсорбера при рабочей скорости газа w = 2,15 м/с, практически вдвое превышающей принятую ранее:
Параметр
0,00137 0,00252
0,00111 0,00178
0,0061 0,01
0,000509 0,00082
100000 61900
3,8 2,8
144 163
1148 4920
Число абсорберов 4 5
Как видно из приведенных данных, повышение интенсивности процесса приводит к значительному уменьшению диаметра колонны при некотором возрастании высоты насадки и к существенному повышению гидравлического сопротивления.
Приведенный расчет выполнен без учета влияния на основные размеры абсорбера некоторых явлений (таких, как неравномерность распределения жидкости при орошении, обратное перемешивание, неизотермичность процесса и др.), которые в ряде случаев могут привнести в расчет существенные ошибки. Эти явления по-разному проявляются в аппаратах с насадками разных типов. Оценить влияние каждого из них можно, пользуясь рекомендациями, приведенными в литературе [3, 8].
- О. С. Ломова расчет массообменных установок нефтехимической промышленности
- Часть 1
- Рецензенты: е.О. Захарова, к.Т.Н., доцент ОмГпу, зав. Кафедрой «Технологии и методики преподавания технологии»;
- Оглавление
- Глава 1. Расчет абсорбционной установки 6
- Глава 2. Расчет ректификационной установки 34
- Глава 3. Расчет экстракционной установки 61
- Введение
- Глава I. Расчет абсорбционной установки
- 1.1. Процесс абсорбции
- Задание на проектирование
- Основные условные обозначения
- Индексы
- 1.2. Пример расчета насадочного абсорбера
- 1.2.1. Масса поглощаемого вещества и расход поглотителя
- 1.2.2. Движущая сила массопередачи
- 1.2.3. Коэффициент массопередачи
- 1.2.4. Скорость газа и диаметр абсорбера
- 1.2.5. Плотность орошения и активная поверхность насадки
- 1.2.6. Расчет коэффициентов массоотдачи
- 1.2.7. Поверхность массопередачи и высота абсорбера
- 1.2.8. Гидравлическое сопротивление абсорберов
- 1.3. Расчет тарельчатого абсорбера
- Сравнительная характеристика тарелок
- 1.3.1. Скорость газа и диаметр абсорбера
- 1.3.2. Коэффициент массопередачи
- 1.3.3. Высота светлого слоя жидкости
- 1.3.4. Коэффициент массоотдачи
- 1.3.5. Число тарелок абсорбера, выбор расстояния между тарелками и определение высоты абсорбера
- 1.3.6. Гидравлическое сопротивление тарелок абсорбера
- 1.4. Сравнение данных расчета насадочного и тарельчатого абсорберов
- Список используемой литературы
- Глава 2. Расчет ректификационной установки
- 2.1. Процесс ректификации
- Задание на проектирование
- Основные условные обозначения
- Индексы
- 2.2. Расчёт насадочной ректификационной колонны непрерывного действия
- 2.2.1. Материальный баланс колонны и рабочее флегмовое число
- 2.2.2. Скорость газа и диаметр колонны
- 2.2.3. Высота насадки
- 2.2.4. Гидравлическое сопротивление насадки
- 2.3. Расчет тарельчатой ректификационной колонны непрерывного действия
- 2.3.1. Скорость пара и диаметр колонны
- 2.3.2. Высота колонны
- 2.3.3. Высота светлого слоя жидкости на тарелке и паросодержание барбатажного слоя
- 2.2.4. Коэффициенты массопередачи и высота колонны
- 2.3.5. Гидравлическое сопротивление тарелок колонны
- Список используемой литературы
- Глава 3. Расчет экстракционной установки
- 3.1. Процесс экстракции
- 3.2. Расчет экстракционных аппаратов Основные условные обозначения
- Индексы
- 3.2.1. Скорость осаждения капель
- 3.2.2. Скорости захлебывания в противоточных экстракционных колоннах
- 3.2.3. Удерживающая способность
- 3.2.4. Размер капель
- 3.2.5. Массопередача в экстракционных аппаратах
- 3.2.6. Размер отстойных зон
- 3.3. Пример расчета распылительной колонны Задание на проектирование
- 3.4. Пример расчета роторно-дискового экстрактора
- Приложения
- Федеральное агентство по образованию
- Курсовой проект
- Пояснительная записка