48. Теплопередача при переменных температурах. Средняя разность температур.
В условиях изменяющихся температур теплоносителей уравнение теплопередачи для элементарной площади можно записать в следующем виде:
Тепловой поток передаваемый через всю поверхность теплообмена при постоянном коэффициенте теплопередачи k равен
Для учета изменения температур теплоносителей по поверхности теплообмена в расчетное уравнение теплопередачи вводится средняя разность температур (средний температурный напор), который определяется уравнением
, где - средняя разность температур.
График изменения температуры теплоносителей при прямотоке (а) и противотоке (б)
Пренебрегая падением давления теплоносителей при движении, т.е. считая процесс протекающим изобарным, из первого начала термодинамики имеем
Q – мощность теплообменного аппарата, Вт; и – расход горячего и холодного теплоносителей соответственно, кг\с; и – изменение удельной энтальпии греющего и нагреваемого теплоносителей соответственно, Дж\кг.
Для конвективных теплообменных аппаратов (в процессе теплообмена отсутствуют фазовые переходы) в силу того, что
имеем
В силу того, что для теоретического процесса теплопередачи в ТА, тепловой поток определенный из уравнение теплового баланса равен тепловому потоку определенному по уравнению теплопередачи имеем
Расчетные соотношения для определения средней разности температур простейших схем взаимного движения теплоносителя: прямотока и противотока получаются из выражения записанного для элементарного участка теплообмена
…. ...
Расчетное уравнение средней разности температур справедливое для схем прямотока и противотока, называется среднелогарифмической разностью температур или уравнением Грасгофа.
для схемы прямоток
для схемы противоток
Согласно графоаналитическому методу, предварительно по формуле Грасгофа подсчитывается среднелогарифмическая разность температур для противоточного теплообменного аппарата
Затем с учетом схемы движения теплоносителей (число ходов по трубному и межтрубному пространству) из графиков определяется коэффициент eDt =f(PS и R)
Н.И. Белоконь предложил обобщенное уравнение для определения средней разности температур справедливое для любых схем движения теплоносителей
;
- характеристическая разность температур,
Wm – приведенный водяной эквивалент теплоносителей,
Индекс противоточности р определяется как отношение водяного эквивалента поверхности теплообмена, где осуществляется противоточная схема движения теплоносителей (kF)прот, и водяного эквивалента поверхности теплообмена всего ТА (kF)
Для прямоточной схемы индекс противоточности равен p = 0, а при противотоке p = 1 и в этом случае уравнение уравнение Белоконя совпадает с уравнением Грасгофа.
- 1. Основные определения и понятия термодинамики
- 2. Параметры состояния и уравнения состояния.
- 3.Термодинамическая работа, координаты p-V
- 4. Потенциальная (техническая) работа
- 5. Теплоемкость. Определение теплоемкости веществ.
- Вопрос 8. Определение температуры смеси. Теплоемкость смеси
- Вопрос 9. Термодинамические условия фазовых переходов.
- Вопрос 10. Критические параметры чистого вещества и смесей.
- Вопрос 11. Теория соответственных состояний. Коэффициент сжимаемости.
- 13. Аналитическое выражение первого начала термодинамики
- 14. Первое начало термодинамики для идеального газа.
- 1 5. Принцип существования энтропии идеального газа.
- 31. Теплопроводность. Закон Фурье. Коэффициент теплопроводности
- 32. Дифференциальное уравнение теплопроводности. Условия однозначности
- 39. Теплообмен излучением. Основные законы.
- 40. Теплообмен излучением между телами.
- 42. Сложный теплообмен (теплопередача)
- 43. Теплопередача. Основное уравнение теплопередачи. Коэффициент теплопередачи.
- 44. Теплопередача через плоскую однослойную и многослойную плоскую стенку
- 45. Теплопередача через криволинейные однослойные и многослойные стенки.
- 48. Теплопередача при переменных температурах. Средняя разность температур.
- 49. Тепловой баланс теплообменного аппарата и частные случаи.
- 50.Средняя разность температур для сложных схем теплообмена
- 51.Обобщенные уравнения теплопередачи при переменных температурах
- 52. Расчет теплообменный аппаратов первого рода.
- 53. Расчет теплообменный аппаратов второго рода.
- 54. Круговые процессы. Кпд и холодильный коэффициент.
- 55. Обратимый цикл Карно.
- 56. Математическое выражение второго начала термостатики. Основные следствия.
- 57. Математическое выражение второго начала термодинамики. Основные следствия.
- 58. Истечение жидкостей и газов. Основные расчётные соотношения.
- 59.Особенности истечения сжимаемой жидкости. Кризис истечения. Режимы истечения.
- 60.Переход через критическую скорость (сопло Лаваля).
- 61. Особенности истечения через каналы переменного сечения, сопло и диффузор.
- 62. Дросселирование. Эффект Джоуля-Томсона. Основные понятия
- 63. Процессы парообразования, определение параметров насушенного пара, диаграмма h-s.
- 64.Классификация гту:
- 72. Паросиловые установки, цикл Ренкина, методы повышения кпд.
- 73.Схема,рабочий процесс и цикл паросиловой установки с промежуточным перегревом
- 74.Схема,рабочий процесс и цикл паросиловой установки с регенерацией
- 76.Рабочий процесс парокомпрессионной холодильной установки:
- 77. Воздушные холодильные машины.
- 78.Абсорбционная холодильная установка
- 79.Схема,рабочий процесс и цикл теплового насоса
- 82. Индикаторные и эффективные характеристики двигателей внутреннего сгорания