2. Конструкции забойных двигателей – (турбобуры и взд) и их технико-технологические характеристики.
Секционные унифицированные шпиндельные турбобуры
Секционные унифицированные шпиндельные турбобуры типа ЗТСШ1 предназначены для бурения скважин шарошечными и алмазными долотами.
В настоящее время выпускаются турбобуры ЗТСШ1 с диаметрами корпуса 172, 195 и 240 мм.
Турбобуры состоят из трех турбинных и одной шпиндельной секции. В шпинделе установлена непроточная резинометаллическая осевая опора, которая выполняет также функцию уплотнения вала турбобура.
В каждой турбинной секции размещено около 100 ступеней турбины, по четыре радиальные опоры и по три ступени предохранительной осевой пяты. Последняя применяется для устранения опасности соприкосновения роторов и статоров турбины из-за износа шпиндельного подшипника в процессе работы.
В турбобурах ЗТСШ1 устанавливается цельнолитая металлическая турбина, а в турбобурах ЗТСШ1-ТЛ - составная турбина, проточная часть которой изготовлена методом точного литья.
В качестве запасного комплекта к турбобурам ЗТСШ1-195ТЛ поставляется и турбина типа 24/18-195ТПК, лопаточный венец которой выполнен из пластмассы.
Технические характеристики секционных унифицированных шпиндельных турбобуров ЗТСШ1 приведены в табл. 7.1 (при плотности жидкости 1000 кг/м2).
Высокомоментные турбобуры с системой гидроторможения
Высокомоментные турбобуры типа АГТШ с системой гидродинамического торможения предназначены для бурения глубоких скважин шарошечными долотами, но могут применяться и при алмазном бурении. Выпускают турбобуры типа АГТШ с диаметрами корпуса 164, 195 и 240 мм.
Турбобуры состоят из трех секций и шпинделя. Две турбинные секции содержат многоступенчатую высоко-циркулятивную турбину. В третьей устанавливаются ступени гидродинамического торможения (ГТ). Ступени ГТ состоят из статора и ротора, лопатки венцов которых имеют безударное обтекание жидкостью на тормозном режиме. При вращении такого ротора возникает крутящий момент, противоположный моменту, развиваемому турбиной турбобура. Значение тормозящего момента пропорционально частоте вращения вала.
В шпинделе турбобура установлен упорно-радиальный шарикоподшипник серии 128 000. В качестве уплотнения вала используются круглые резиновые кольца ПРУ.
Многосекционные турбобуры
С целью снижения частоты вращения долота и наращивания крутящего момента на валу турбобура применяются многосекционные (свыше трех секций) турбинные сборки. Серийные турбобуры, собранные из пяти-шести турбинных секций, позволяют эффективно отрабатывать высокопроизводительные долота при пониженных расходах бурового раствора, а также предоставляют технологам значительно более широкие возможности для выбора оптимальных параметров режима бурения.
По своей конструктивной схеме многосекционный турбобур не отличается от серийного. Однако увеличение числа турбинных секций предъявляет более высокие требования к надежности работы шпинделя турбобура. Он должен быть не только более надежным, но и более дол-говечным, чем применяемые в настоящее время шпиндели серийных турбобуров. Этим требованиям отвечают шпиндели с лабиринтным дисковым уплотнением типа ШФД.
Турбобур с независимой подвеской
Каждая турбинная секция с независимой подвеской имеет свой упорный шарикоподшипник. Корпусы секций соединяются между собой с помощью конической резьбы, а валы -квадратными полумуфтами и могут свободно перемещаться в осевом направлении. В результате такой компоновки секций износ упорного подшипника шпинделя не влияет на осевой зазор между статором и ротором турбины. Последний определяется только износом подшипников, установленных в турбинных секциях. Поскольку осевая нагрузка на эти подшипники действует только с одной стороны и практически не имеет динамической составляющей, то этот износ легко прогнозируется. При сборке ротор турбины устанавливается в крайнее верхнее положение относительно статора, что позволяет увеличить время работы упорного подшипника секции. Турбобур с независимой подвеской может быть собран с турбиной любого типа. В каждой секции можно установить по 80-90 ступеней.
Ниже приводится характеристика трехсекционного турбобура А7ГТШМ (при плотности жидкости 1000 кг/м3).
Число ступеней:
турбины 249
ГТ 66
Расход жидкости, л/с 28
Крутящий момент*, Н-м 1800
Частота вращения*, с"1 5,2
Перепад давления*, МПа 7
•При максимальной мощности турбобура JVmal.
Турбобур с плавающим статором
Каждый статор такого турбобура имеет свободу перемещения в осевом направлении и с помощью шпонки, заходящей в специальный паз корпуса, запирается от проворота под действием собственного реактивного момента. Каждый ротор представляет собой и пяту для соответствующего статора, который не имеет приставочных дистанционных колец.
Такое исполнение ступени турбины, с одной стороны, позволяет до максимума увеличить средний диаметр турбины, а с другой, — до минимума сократить осевой люфт в ступени. Тем самым в корпусе стандартной длины удается разместить число ступеней турбин в 1,4 раза больше, чем у серийных турбобуров. Недостаток этой конструкции - свободный выход бурового раствора на внутреннюю поверхность корпуса турбинной секции.
Отсутствие взаимосвязи между осевыми люфтами турбины и осевой опорой шпинделя позволяет исключить из практики турбинного бурения торцовый износ лопаточных венцов турбин и повысить межремонтный период работы шпинделей. Турбобур состоит из трех турбинных секций и шпинделя с двумя вариантами осевой опоры: подшипник ШШО-172 (538920) и резинометаллическая пята ПУ-172.
Турбобур с полым валом
Предназначенные для бурения скважин шарошечными и алмазными долотами в сложных горногеологических условиях. Турбобур состоит из турбинных секций и шпинделя. В зависимости от условий эксплуатации возможно использование от трех до плести турбинных секций для обеспечения требуемой характеристики турбобура.
Как видно турбинные секции состоят из корпуса и полого вала, установленного внутри корпуса на четырех резинометаллических радиальных опорах. В пространстве между корпусом и полым валом установлено около 100 ступеней турбины. Концы полого вала оборудованы конусно-шлицевыми полумуфтами, внутри которых имеются уплотни-тельные элементы, предотвращающие утечку бурового раствора из полости вала к турбине. При сборке турбинных секций соблюдаются заданные размеры вылета и утопания полумуфт для обеспечения необходимого положения роторов относительно статоров.
Шпиндель турбобура состоит из корпуса и полого вала, установленного внутри корпуса на резинометаллических радиальных опорах и упорно-радиальном шариковом подшипника.
При сборке турбинных секций предусмотрена возможность установки стабилизаторов между турбинными секциями или между турбинной секцией и шпинделем. Для этого на нижнем переводнике турбинной секции на резьбе закрепляется стабилизатор, а на нижнем конце вала — удлинитель соответствующей длины так, чтобы не изменять ранее отрегулированные присоединительные размеры утопания и вылетов полумуфт.
Турбобур с редуктором-вставкой
Турбобуры с редуктором-вставкой типа РМ предназначены для эффективного использования шарошечных долот с маслонаполненными опорами при технологически необходимом расходе бурового раствора и уменьшенным по сравнению с другими гидравлическими двигателями перепадом давлений.
Маслонаполненный редуктор-вставка применяется в сочетании с турбинными секциями и шпинделем серийно выпускаемых турбобуров. Редуктор-вставка устанавливается между шпинделем и турбинными секциями, снабжен планетарной передачей и системой маслозащиты передачи и опор.
Планетарная передача двухрядная, зубчатая, с косозубым зацеплением Новикова. Система маслозащиты имеет уплотнения торцового типа. Выходной вал с помощью шлицевой муфты соединен с валом шпинделя, а входной вал с помощью полумуфты - с турбинными секциями.
Редуктор-вставка представляет собой автономный узел, который может быть заменен непосредственно на буровой. Энергетические характеристики турбобура с редуктором-вставкой и разными типами турбин приведены в табл. 7.6.
При испытаниях турбобуров средняя наработка на отказ маслонаполненного редуктора составила 100—115 ч, а при бурении скважин с высокими забойными температурами (свыше 150 °С) - около 40 ч.
Турбины современных турбобуров
Турбина турбобура представляет собой преобразователь гидравлической энергии потока жидкости в механическую энергию вращения вала.
Турбина современного турбобура — многоступенчатая, осевого типа и состоит из систем статоров и роторов. Как правило, система статоров связана с корпусом, а система роторов - с валом турбобура.
При постоянном значении расхода бурового раствора через турбину развиваемый ею крутящий момент определяется по формуле Эйлера
М = Орг(с1ц - c2u)z,
где Q — расход жидкости; р — плотность жидкости; г — средний радиус турбины; с1ц, с2и - проекции абсолютной скорости потока жидкости, протекающего соответственно.
Принцип действия турбины турбобура (пара стартор - ротор):
1, 5 — наружный обод ротора и статора;
2, 3 — лопатка ротора и статора; 4, 6 - внутренний обод статора и ротора.
Винтовые двигатели(ВЗД)- Винтовые двигатели относятся к объемным роторным гидравлическим машинам.
Согласно общей теории винтовых роторных гидравлических машин элементами рабочих органов (РО) являются:
статор двигателя с полостями, примыкающими по концам к камерам высокого и низкого давления;
ротор-винт, носящий название ведущего, через который крутящий момент передается исполнительному механизму;
замыкатели-винты, носящие название ведомых, назначение которых уплотнять двигатель, т.е. препятствовать перетеканию жидкости из камеры высокого давления в камеру низкого давления.
В одновинтовых гидромашинах используются механизмы, в которых замыкатель образуется лишь двумя деталями, находящимися в постоянном взаимодействии, -статором и ротором.
Рабочие органы ВЗД на продольном и поперечном разрезах.
- 2. Особенности течения жидкости и газа в горизонтальном стволе.
- 3. Стадии разработки месторождения.
- 5. Технические параметры и конструкция фонтанной арматуры.
- 1.Записать формулу для потенциала в точке на расстоянии r от центра скважины.
- 2. Спуско-подъемный комплекс бу.
- 3.Особенности разработки газовых и газоконденсатных месторождений.
- 5. Классификация нефтебаз и нефтехранилищ.
- 1. Состав и физические свойства нефтей.
- 2. Факторы, влияющие на продуктивность горизонтальных скважин.
- 3. Из каких методов состоит комплекс промыслово-геофизических исследований скважин.
- 4. Технология ремонтно-изоляционных работ по отключению обводнившихся пропластков.
- 5.Установки по подготовке газа.
- 1. Фильтрационно-емкостные свойства пласта.
- 2. Установившийся приток к горизонтальным скважинам; концевые эффекты; формулы расчета дебита.
- 3.Моделирование процессов разработки.
- 4.Средства измерения. Погрешность. Поверка и градуировка.
- 5.Обессоливающие и обезвоживающие установки.
- 1.Движение жидкости в трещиноватых и трещиновато-пористых пластах.
- 2.Особенности эксплуатации и область применения многоствольных скважин.
- 3.Классификация и характеристики систем разработки.
- 4. Цели и задачи гидродинамических исследований скважин.
- 5. Подготовительные работы. Земляные работы.
- 1. Особенности притока реального газа к несовершенной скважине по линейному закону фильтрации.
- 2. Назначение горизонтальных скважин. Возможности проводки горизонтальных скважин.
- 3. Режимы работы газовых залежей.
- 4.Динамометрирование шсну, как метод контроля за работой насоса.
- 5. Оборудование для разделения скважинной продукции
- 1. Записать формулу Дюпюи для дебита совершенной скважины.
- 2. Понятие о режимах бурения скважин и их параметрах; влияние параметров режима бурения на технико-экономические показатели бурения.
- 3. Основные понятия о коллекторских и фильтрационных свойствах нефтеносных пластов.
- 4. Классификация видов крс.
- 5.Техническое обслуживание и ремонт трубопроводов
- 1. Что называется коэффициентом продуктивности скважин? Записать формулу для этого коэффициента, его размерность в си и его размерность на производстве при добыче нефти.
- 2. Состав и функции бурильной колонны, виды труб и замков, бурильные свечи; соединительные резьбы на них.
- 3. Принцип работы поршневых насосов. Индикаторная диаграмма идеального поршневого насоса.
- 1. Что представляют собой относительная и фазовая проницаемости?
- 2. Конструкции забойных двигателей – (турбобуры и взд) и их технико-технологические характеристики.
- 3. Эксплуатация скважин установками эцн.
- 4.Особенности исследования насосных скважин.
- 5. Периодические испытания трубопроводов
- 1.Записать линейный закон фильтрации Дарси.
- 2. Виды горизонтальных скважин; условия строительства горизонтальных скважин; условия формирования околоскваженных зон.
- 3.Режимы работы нефтяных залежей.
- 4. Исследование скважин на установившихся режимах фильтрации.
- 5. Технические параметры поршневых насосов. Индикаторная диаграмма идеального поршневого насоса.
- 1.Смачивание и краевой угол.
- 2. Классификации породоразрушающего инструмента по способам разрушения горных пород, по видам забоев.
- 3. Разработка с поддержанием пластового давления.
- 4.Цели и задачи геофизических исследований скважин
- 5. Причины возникновения и методы предупреждения кавитации.
- 1. Установившийся приток газа к скважине. Линейный и нелинейный законы фильтрации газов.
- 2. Классификация буровых установок.
- 3.Технологические показатели разработки. Выбор рациональной системы.
- 4. Предупреждение образования и удаление аспо в нкт.
- 5. Установки для подготовки нефти. Упсв.
- 1. Удельная поверхность горных пород.
- 2. Профили скважин. Области применения горизонтальных скважин.
- 3. Контроль за процессом разработки месторождения.
- 4. Кислотные обработки скважин.
- 5. Оборудование для сбора нефти и газа. Агзу.
- 1. Основные типы пород — коллекторов нефти и газ
- 2. Способы доставки глубинных приборов в горизонтальный участок скважины.
- 3. Эксплуатация скважин установками шсн.
- 4. Классификация и принцип действия пакеров.
- 5. Классификация компрессоров.
- 1. Дать определение неоднородного пласта. Какие бывают неоднородности пласта?
- 2. Виды конструкций горизонтальных скважин.
- 3. Классификация запасов нефти и газа, методы подсчета запасов нефти и природного газа.
- 4. Экспресс-методы исследования скважин.
- 5. Основные требования к проектированию систем сбора нефти, газа и воды
- 1. Тепловые свойства горных пород.
- 2. Функции и составы буровых растворов, приборы для определения параметров буровых растворов.
- 3. Назначение и классификация нкт.
- 4.Исследование скважин на неустановившихся режимах фильтрации
- 5. Классификация аварий на трубопроводах
- 1. Проницаемость горных пород. Методы её измерения. Формула определения проницаемости пород по газу.
- 2. Особенности притока к горизонтальным скважинам. Концевые эффекты.
- 3.Технические параметры работы центробежного насоса.
- 4. Предупреждение и удаление песчаных пробок.
- 5. Противокоррозийная и тепловая изоляция.
- 1. Поверхностное явление при фильтрации пластовых жидкостей.
- 2.Осложнения и аварии при бурении скважин; классификация аварий; способы и устройства для ликвидации аварий.
- 3. Отбор и изучение образцов пород в процессе бурения скважин. Влияние термодинамических условий на изменение коллекторских свойств пород. 4.Особенности исследования газовых скважин
- 5. Контроль качества, очистка, испытание и приемка в эксплуатацию