logo search
Конспект Метрология 2011

1.1.3. Розмірності фізичних величин

Розмірність (dimension) основної величини - це її позначення L, M, T, I, , N, J, і т.д., а розмірність похідної величини - вираз, що описує її зв'язок з основними величинами системи і становить добуток розмірностей основних величин, піднесених до відповідних степенів. Наприклад, розмірність величини Х в системі трьох основних величин LMT

dim X = LMT

де , ,  показники розмірності, які є цілими числами (за винятком систем СГСЕ та СГСМ, де вони можуть бути і дробові).

Величина, в розмірності якої хоча б один показник розмірності не дорівнює нулю, є розмірною величиною, а величина в розмірності якої всі показники розмірності дорівнюють нулю, - безрозмірною величиною. Величина, безрозмірна в одній системі, може бути розмірна в іншій. В певній системі величин розмірність кожної величини однозначна, але є різні за природою величини, які мають однакову розмірність, приклад - енергія та робота. Тому розрізняють фізичну однорідність і розмірну однорідність ФВ.

Операції над розмірностями виконуються за правилами алгебри. Наприклад, якщо величина Z є функцією величин X i Y, тобто

Z = f (X, Y),

причому

dim X = LMT і dim Y = LMT

то

dim Z = f(LMT, LMT).

Зокрема, якщо

Z = XY, то dim Z = L+M+T+;

Z = X/Y, то dim Z = L-M-T-;

Z = (X/Y)n, то dim Z = L(-)nM(-)nT(-)n.

З цих прикладів видно, що внаслідок множення і ділення величин виникають нові величини, у яких свої розмірності і свої одиниці. Їх можна знайти в спеціальних таблицях і нема необхідності всі запам'ятовувати, а простіше отримати на підставі відомих рівнянь зв'язку між величинами. Деякі розмірності корисно запам'ятати, наприклад розмірність сили та енергії:

dim F = LMT-2, dim E = L2MT-2

Тепер, якщо треба знайти розмірність напруги U, то, враховуючи, що потужність

P = E/T= UI

знаходимо

dim U = dim P/I = dim E/TI = L2MT-3I-1

Розмірності ФВ є одночасно і розмірностями їх одиниць. Рівняння зв'язку між величинами використовуються для утворення когерентних похідних одиниць. Якщо рівняння зв'язку має коефіцієнт, який не дорівнює 1, то в праву його частину підставляють такі значення величин в одиницях даної когерентної системи, щоб їх добуток з коефіцієнтом рівняння дорівнював 1. Наприклад, якщо для утворення одиниці енергії використовується рівняння

Е = 1/2 mv2

то її когерентна одиниця в системі SI буде

dim E = [E] = 1/2 (2 [m] [v]2) = 1/2 (2 кг) (1м/c)2 = кг м2 с2 = Дж.

Отже одиницею енергії в SI є джоуль, який дорівнює кінетичній енергії тіла масою 2 кг, що рухається з швидкістю 1 м/с.

Розмірність є якісною характеристикою ФВ. Вона відображає її зв'язок з основними ФВ, і залежить від вибору цих величин. М. Планк стверджував, що питання про істинну розмірність будь-якої величини "має не більше сенсу, ніж питання про істинну назву якого-небудь предмету". По цій причині в гуманітарних науках, мистецтві, спорті, кваліметрії, де номенкла­тура основних величин не визначена, теорія розмірностей не знаходить поки що ефективного застосування. В технічних або точних науках (фізиці, метрології) навпаки, методами теорії розмірності часто вдається отримати важливі самостійні результати. Формальне застосування алгебри розмірностей інколи дає можливість визначити невідому залежність між ФВ.

Приклад: в результаті спостережень встановлено, що при русі по колу сила F, що притискає тіло до опори, певним чином залежить від його швидкості v, маси m і радіуса кола r тобто F = mvr. Який вигляд цієї залежності.

Розв'язок. На основі алгебри залежностей

dim F = dimm dimv dimr.

Нам відомо, що

dim F = LMT-2; dim m = M; dim v = LT-1; dim r = L.

Звідси

LMT-2 = M(LT-1) L = L+ M T-.

Отже, показники розмірності задовольняють рівняння:

 +  = 1;  = 1; - = -2.

Вирішуючи цю систему рівнянь, отримуємо  = 1;  = 2;  = -1.

Таким чином:

F = mv2/r.

Теорія розмірностей має широке застосування для оперативної перевірки правильності складних формул. Якщо розмірність лівої та правої частин не співпадають, то в виводі формули, до якої галузі знань вона не відносилась би, слід шукати помилку.