1.1. Процесс абсорбции
Области применения абсорбционных процессов в промышленности весьма обширны: получение готового продукта путем поглощения газа жидкостью; разделение газовых смесей на составляющие их компоненты; очистка газов от вредных примесей; улавливание ценных компонентов из газовых выбросов.
Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа в жидкости не сопровождается химической реакцией или влиянием этой реакции на скорость процесса можно пренебречь. Как правило, физическая абсорбция не сопровождается существенными тепловыми эффектами. Если при этом начальные потоки газа и жидкости незначительно различаются по температуре, такую абсорбцию можно рассматривать как изотермическую. С этого наиболее простого случая начнем рассмотрение расчета процесса абсорбции.
Основная сложность при проектировании абсорберов заключается в правильном выборе расчетных закономерностей для определения кинетических коэффициентов из большого числа различных, порой противоречивых зависимостей, представленных в технической литературе.
Расчеты по этим уравнениям, обычно справедливым для частных случаев, приводят зачастую к различающимся, а иногда к заведомо неверным результатам. Рекомендуемые здесь уравнения выбраны после тщательного анализа и сравнительных расчетов в широком интервале переменных, проверки адекватности расчетных данных опытным путем, полученным в реальных системах. В данной главе приведены примеры расчетов насадочного и тарельчатого абсорберов по основному кинетическому уравнению массопередачи.
Рис. 1.1. Принципиальная схема абсорбционной установки:
1 – вентилятор (газодувка); 2 – абсорбер; 3 – брызгоотбойник; 4, 6 – оросители;
5 – холодильник; 7 – десорбер; 8 – куб десорбера; 9, 13 – емкости для абсорбента;
10, 12 – насосы; 11 – теплообменник-рекуператор
На рисунке 1.1 дана схема абсорбционной установки. Газ на абсорбцию подается газодувкой (1) в нижнюю часть колонны (2), где равномерно распределяется перед поступлением на контактный элемент (насадку или тарелки). Абсорбент из промежуточной емкости (9) насосом (10) подается в верхнюю часть колонны и равномерно распределяется по поперечному сечению абсорбера с помощью оросителя (4). В колонне осуществляется противоточное взаимодействие газа и жидкости. Газ после абсорбции, пройдя брызгоотбойник (3), выходит из колонны. Абсорбент стекает через гидрозатвор в промежуточную емкость (13), откуда насосом (12) направляется на регенерацию в десорбер (7) после предварительного подогрева в теплообменнике-рекуператоре (11). Исчерпывание поглощенного компонента из абсорбента производится в кубе (8), обогреваемом, как правило, насыщенным водяным паром. Перед подачей на орошение колонны абсорбент, пройдя теплообменник-рекуператор И, дополнительно охлаждается в холодильнике (5). Регенерация может осуществляться также другими методами, например отгонкой поглощенного компонента потоком инертного газа или острого пара, понижением давления, повышением температуры. Выбор метода регенерации существенно сказывается на технико-экономических показателях абсорбционной установки в целом.
- О. С. Ломова расчет массообменных установок нефтехимической промышленности
- Часть 1
- Рецензенты: е.О. Захарова, к.Т.Н., доцент ОмГпу, зав. Кафедрой «Технологии и методики преподавания технологии»;
- Оглавление
- Глава 1. Расчет абсорбционной установки 6
- Глава 2. Расчет ректификационной установки 34
- Глава 3. Расчет экстракционной установки 61
- Введение
- Глава I. Расчет абсорбционной установки
- 1.1. Процесс абсорбции
- Задание на проектирование
- Основные условные обозначения
- Индексы
- 1.2. Пример расчета насадочного абсорбера
- 1.2.1. Масса поглощаемого вещества и расход поглотителя
- 1.2.2. Движущая сила массопередачи
- 1.2.3. Коэффициент массопередачи
- 1.2.4. Скорость газа и диаметр абсорбера
- 1.2.5. Плотность орошения и активная поверхность насадки
- 1.2.6. Расчет коэффициентов массоотдачи
- 1.2.7. Поверхность массопередачи и высота абсорбера
- 1.2.8. Гидравлическое сопротивление абсорберов
- 1.3. Расчет тарельчатого абсорбера
- Сравнительная характеристика тарелок
- 1.3.1. Скорость газа и диаметр абсорбера
- 1.3.2. Коэффициент массопередачи
- 1.3.3. Высота светлого слоя жидкости
- 1.3.4. Коэффициент массоотдачи
- 1.3.5. Число тарелок абсорбера, выбор расстояния между тарелками и определение высоты абсорбера
- 1.3.6. Гидравлическое сопротивление тарелок абсорбера
- 1.4. Сравнение данных расчета насадочного и тарельчатого абсорберов
- Список используемой литературы
- Глава 2. Расчет ректификационной установки
- 2.1. Процесс ректификации
- Задание на проектирование
- Основные условные обозначения
- Индексы
- 2.2. Расчёт насадочной ректификационной колонны непрерывного действия
- 2.2.1. Материальный баланс колонны и рабочее флегмовое число
- 2.2.2. Скорость газа и диаметр колонны
- 2.2.3. Высота насадки
- 2.2.4. Гидравлическое сопротивление насадки
- 2.3. Расчет тарельчатой ректификационной колонны непрерывного действия
- 2.3.1. Скорость пара и диаметр колонны
- 2.3.2. Высота колонны
- 2.3.3. Высота светлого слоя жидкости на тарелке и паросодержание барбатажного слоя
- 2.2.4. Коэффициенты массопередачи и высота колонны
- 2.3.5. Гидравлическое сопротивление тарелок колонны
- Список используемой литературы
- Глава 3. Расчет экстракционной установки
- 3.1. Процесс экстракции
- 3.2. Расчет экстракционных аппаратов Основные условные обозначения
- Индексы
- 3.2.1. Скорость осаждения капель
- 3.2.2. Скорости захлебывания в противоточных экстракционных колоннах
- 3.2.3. Удерживающая способность
- 3.2.4. Размер капель
- 3.2.5. Массопередача в экстракционных аппаратах
- 3.2.6. Размер отстойных зон
- 3.3. Пример расчета распылительной колонны Задание на проектирование
- 3.4. Пример расчета роторно-дискового экстрактора
- Приложения
- Федеральное агентство по образованию
- Курсовой проект
- Пояснительная записка