32. Дифференциальное уравнение теплопроводности. Условия однозначности
Распределение температуры в теле, описывается дифференциальным уравнением теплопроводности, которое при принятых допущениях, а именно: тело однородно и изотропно; физические параметры тела постоянны во времени и пространстве; температурные деформации рассматриваемого элементарного объема малы по сравнению с самим объемом; внутренние источники теплоты распределены в рассматриваемом объеме равномерно; макрочастицы тела неподвижны относительно друг друга; имеет следующий вид:
, где – время, сек; – коэффициент температуропроводности, характеризующий скорость изменения температуры в любой точке тела, ;
– теплоемкость тела; – плотность тела; – объемная плотность тепловыделения, вm/м3; – температура; – оператор Лапласа.
Условия однозначности:
I) Геометрические условия (форма, размеры тела);
II)Физические условия (физические свойства тела и его физические параметры);
III) Начальные условия (распределение температуры в теле в начальный момент времени);
IV) Граничные условия, определяющие взаимодействие тела с окружающей средой.
1. Граничные условия первого рода. Задается распределение температуры на поверхности тела, как функция координат и времени:
2. Граничные условия второго рода. Задается распределение плотности потока на поверхности тела, как функция координат и времени:
В частном случае, когда плотность теплового потока на поверхности тела остается постоянной, имеем .
3. Граничные условия третьего рода. Задается температура окружающей среды и закон теплообмена между поверхностью тела и окружающей средой: если , где – коэффициент теплообмена, представляющий собой плотность теплового потока подведенного (отведенного) к единице поверхности тела при разности температур между поверхностью тела и окружающей среды 10С, вm/м2град.
4. Граничные условия четвертого рода. Отражают условия теплообмена системы тел имеющих различные коэффициенты теплопроводности. Между телами предполагается идеальный контакт. Тогда , где – коэффициент теплопроводности первого тела; – коэффициент теплопроводности второго тела.
33-34. Теплопроводность через однослойные стенки (плоские, цилиндрические).
Р асчетное выражение удельного теплового потока получается из уравнения Фурье
В общем случае для стенки, состоящей из n – слоев имеем
Т емпература на стыке двух слоев:
Рассмотрим теплопроводность цилиндрической однослойной стенки с внутренним диаметром d1=2r1 и наружным диаметром d2=2r2 в условиях стационарного температурного поля. Внутренние источники теплоты отсутствуют.
Для определения теплового потока через цилиндрическую поверхность воспользуемся законом Фурье
Подставляя в уравнение Фурье значение градиента температуры
п олучим
Тепловой поток может быть отнесен либо к единице длины, либо к единице внутренней или внешней поверхности.
внутренней поверхности
наружной поверхности
Тепловой поток отнесенный к единице длины, имеет размерность Вm/м и называется линейной плотностью теплового потока.
Л инейной плотность теплового потока в случае многослойной цилиндрической стенки
Температура на границе любых двух слоев:
35-36.Теплоотдача. Закон Ньютона-Рихмана. Коэффициент теплоотдачи. Критериальные уравнения.
Количество теплоты, отдаваемое жидкостью твердой стенке или воспринимаемое жидкостью от стенки в единицу времени, определяется уравнением Ньютона –Рихмана
,
а плотность теплового потока следующим образом:
,
где α – коэффициент, характеризующий условия теплообмена между жидкостью и поверхностью твердого тела, называемый коэффициентом теплоотдачи, Вт/(м2·°C); – температурный напор, K.
В соответствии с формулой по своему физическому смыслу коэффициент теплоотдачи есть плотность теплового потока (q) на поверхности тела, отнесенная к разности температур поверхности тела и окружающей среды. Коэффициент теплоотдачи численно равен плотности теплового потока при температурном напоре, равном единице.
Коэффициент теплоотдачи зависит от многих факторов. В наиболее общем случае является функцией формы и размера тела, режима движения жидкости, физических свойств жидкости, положения в пространстве и состояния поверхности теплообмена и других величин. Процесс теплоотдачи в зависимости от природы движения жидкости протекает различно.
Критерии подобия и критериальные уравнения
безразмерные комплексы, составленные из размерных величин, называются критериями подобия.
Критерий Нуссельта характеризует соотношение тепловых потоков, передаваемых конвекцией и теплопроводностью, является обычно искомой величиной, поскольку в него входит коэффициент теплоотдачи
. (105)
Критерий Рейнольдса характеризует соотношение между силами инерции и молекулярного трения (вязкости)
, (106)
где w – средняя (линейная) скорость жидкости (м/с).
Критерий Прандтля характеризует физические свойства жидкости и их влияние на конвективный теплообмен
, (107)
Критерий Грасгофа характеризует соотношение подъемной силы, возникшей вследствие разности плотностей нагретых и холодных частиц жидкости и силы молекулярного трения и является параметром интенсивности свободного движения жидкости
(109)
. В конечном счете получается общий вид критериального уравнения
– коэффициент теплопроводности твердого тела (в то время как в критерий Нуссельта - относится к окружающей среде)
В случае теплообмена, осложненного массообменном и изменением агрегатного состояния жидкости в процессе теплообмена, критерий Нуссельта зависит еще от ряда критериев.
Следует отметить, что. поскольку критериальные уравнения получены на основе эксперимента, в каждом случае указывается диапазон применимости уравнения, что принимается в качестве определяющей температуры и линейного размера при определении соответствующих критериев.
- 1. Основные определения и понятия термодинамики
- 2. Параметры состояния и уравнения состояния.
- 3.Термодинамическая работа, координаты p-V
- 4. Потенциальная (техническая) работа
- 5. Теплоемкость. Определение теплоемкости веществ.
- Вопрос 8. Определение температуры смеси. Теплоемкость смеси
- Вопрос 9. Термодинамические условия фазовых переходов.
- Вопрос 10. Критические параметры чистого вещества и смесей.
- Вопрос 11. Теория соответственных состояний. Коэффициент сжимаемости.
- 13. Аналитическое выражение первого начала термодинамики
- 14. Первое начало термодинамики для идеального газа.
- 1 5. Принцип существования энтропии идеального газа.
- 31. Теплопроводность. Закон Фурье. Коэффициент теплопроводности
- 32. Дифференциальное уравнение теплопроводности. Условия однозначности
- 39. Теплообмен излучением. Основные законы.
- 40. Теплообмен излучением между телами.
- 42. Сложный теплообмен (теплопередача)
- 43. Теплопередача. Основное уравнение теплопередачи. Коэффициент теплопередачи.
- 44. Теплопередача через плоскую однослойную и многослойную плоскую стенку
- 45. Теплопередача через криволинейные однослойные и многослойные стенки.
- 48. Теплопередача при переменных температурах. Средняя разность температур.
- 49. Тепловой баланс теплообменного аппарата и частные случаи.
- 50.Средняя разность температур для сложных схем теплообмена
- 51.Обобщенные уравнения теплопередачи при переменных температурах
- 52. Расчет теплообменный аппаратов первого рода.
- 53. Расчет теплообменный аппаратов второго рода.
- 54. Круговые процессы. Кпд и холодильный коэффициент.
- 55. Обратимый цикл Карно.
- 56. Математическое выражение второго начала термостатики. Основные следствия.
- 57. Математическое выражение второго начала термодинамики. Основные следствия.
- 58. Истечение жидкостей и газов. Основные расчётные соотношения.
- 59.Особенности истечения сжимаемой жидкости. Кризис истечения. Режимы истечения.
- 60.Переход через критическую скорость (сопло Лаваля).
- 61. Особенности истечения через каналы переменного сечения, сопло и диффузор.
- 62. Дросселирование. Эффект Джоуля-Томсона. Основные понятия
- 63. Процессы парообразования, определение параметров насушенного пара, диаграмма h-s.
- 64.Классификация гту:
- 72. Паросиловые установки, цикл Ренкина, методы повышения кпд.
- 73.Схема,рабочий процесс и цикл паросиловой установки с промежуточным перегревом
- 74.Схема,рабочий процесс и цикл паросиловой установки с регенерацией
- 76.Рабочий процесс парокомпрессионной холодильной установки:
- 77. Воздушные холодильные машины.
- 78.Абсорбционная холодильная установка
- 79.Схема,рабочий процесс и цикл теплового насоса
- 82. Индикаторные и эффективные характеристики двигателей внутреннего сгорания