7.2 Основные эксплуатационные свойства пластичных смазок
К основным эксплуатационным характеристикам пластичных смазок относят: предел прочности, вязкость, коллоидную стабильность, температуру каплепадения, механическую стабильность, водостойкость и др.
Пределом прочности смазки называют то минимальное удельное напряжение, при котором происходит разрушение каркаса смазки в результате сдвига одного её слоя относительно другого. Этот показатель характеризует способность смазок удерживаться в узлах трения, противостоять сбросу с движущихся деталей под влиянием инерционных сил и удерживаться на наклонных и вертикальных поверхностях, не стекая и не сползая.
При невысоком пределе прочности, смазки плохо удерживаются в негерметизированных узлах трения. В то же время смазки с высоким пределом прочности не поступают к трущимся поверхностям, хотя смазочного материала в механизме достаточно.
Предел прочности зависит от температуры и скорости приложения силы (измеряется прибором, называемым пластометром). Для рабочих температур максимальная величина предела прочности 300 – 500 Па, минимаьная величина – 100 – 200 Па. Вязкость. Под вязкостью (эффективной вязкостью) подразумевают вязкость ньютоновской жидкости, оказывающей при данном режиме течения такое же сопротивление сдвигу, как и смазка.
Вязкость смазки зависит от температуры и скорости течения (деформации). При постоянной температуре, с увеличением скорости течения, вязкость смазки понижается в сотни и тысячи раз. В связи с этим, вязкостные свойства пластичных смазок характеризуются вязкостно – температурной и вязкостно – скоростной характеристиками.
От вязкости смазки во многом зависят пусковые характеристики механизмов и энергетические потери при работе в установившемся режиме. При установившемся режиме энергетические потери определяются в основном вязкостью не смазки, а входящего в его состав масла. В условиях минимальной рабочей температуры и скорости деформации 10 с-1 вязкость смазки не должна превышать 15 – 20 кПа*с.
Коллоидная стабильность – это способность смазки сопротивляться отделению дисперсной среды (масла) при хранении и в процессе применения. Отпрессовывание масла из смазки увеличивается и ускоряется с повышением температуры, приложением к ней одностороннего давления, под действием центробежных сил, в сужениях мазепроводов и других аналогичных условиях.
Сильное выделение масла, тем более распад смазки недопустимы, однако для обеспечения нормальной работы трущихся поверхностей небольшое выделение масла желательно, если этот процесс протекает медленно и равномерно на протяжении всего срока службы смазки в подшипнике.
Температурой каплепадения называют такую температуру, при которой падает первая капля смазки, помещённой в капсюле специального прибора, нагреваемого в стандартных условиях. Температура каплепадения зависит в основном от вида загустителя и в меньшей степени от его концентрации. Отсюда и подразделение смазок на низкоплавкие Н, среднеплавкие С и тугоплавкие Т. Во избежание вытекания смазки из узла трения температура каплепадения должна превышать температуру трущихся деталей на 15 – 20 0С.
Механическая стабильность – эксплуатационный показатель, характеризующий способность смазок противостоять разрушению в результате длительного механического воздействия. Смазки с плохой механической стабильностью быстро разрушаются, разжижаются и вытекают из узла трения. В ряде случаев механически нестабильные смазки могут достаточно хорошо работать в надёжно герметизированных узлах трения.
Если смазка при отдыхе после разрушения сильно затвердевает, то она перестаёт поступать к рабочим поверхностям. Полноценная смазка не должна значительно изменять свои свойства ни в процессе работы (деформации), ни при последующем отдыхе.
Водостойкость смазки определяют, как совокупность свойств: не смываться водой или не сильно изменять свои свойства при попадании в неё влаги. Растворимость смазки в воде зависит в основном от природы загустителя. Последние в подавляющем большинстве в воде нерастворимы (исключение составляют некоторые мыла).
Термоупрочнение. Изменение свойств смазок при нагревании и охлаждении называют термоупрочнением. Некоторые смазки после кратковременного нагрева и последующего охлаждения упрочняются. Их предел прочности иногда повышается в десятки или даже в сотни раз. Такие смазки перестают поступать к рабочим поверхностям.
Испаряемость. Для масел и смазок характерна достаточно высокая испаряемость, определяющаяся летучестью дисперсионной среды. Это прежде всего опасно для низкотемпературных смазок. Увеличение скорости испарения дисперсионной среды сокращает срок службы смазок: из-за уплотнения и повышения вязкости ухудшаются низкотемпературные свойства, при высыхании – уменьшается адгезия к металлу.
Химическая стабильность и противокоррозионные свойства. Под химической стабильностью принято понимать стойкость смазки против окисления кислородом воздуха. Окисление, приводящее к изменению кислотного числа и уменьшению предела прочности на сдвиг у большей части смазок, как мыльных, так и неорганических, происходит, как правило, при повышенных температурах (выше 100 0С). Окисление опасно также из-за возможной коррозии металлических поверхностей.
Под противокоррозионными свойствами подразумевают отсутствие коррозионного воздействия смазки на металлические поверхности. Свежие смазки обладают достаточно устойчивыми противокоррозионными свойствами, но в процессе их применения или после длительного хранения возможно ухудшение этих свойств. Поэтому после длительного хранения смазки необходимо проверять. Делается это путём погружения шлифованных металлических пластинок в смазку и осмотра их поверхности после выдержки в течение определённого времени при повышенной температуре.
Консервационные (защитные) свойства определяют способность смазки предохранять металлические поверхности от коррозионного воздействия внешней среды. Консервационные свойства смазок определяются и зависят от следующих факторов: способности удерживаться на поверхности металла, не стекая; коллоидной и химической стабильности; водостойкости, водо- и воздухопроницаемости. В качестве консервационных непригодны водорастворимые смазки. Плохо защищают от коррозии многие неорганические смазки. Превосходя по консервационным свойствам смазочные масла, смазки предотвращают коррозию металлов в условиях 100 % - ной относительной влажности в течение многих месяцев и лет даже в слоях толщиной порядка сотых долей миллиметра.
- Оренбургский государственный университет Кафедра автомобильного транспорта
- Оренбург 2001
- Содержание
- 1 Введение. Классификация эксплуатационных материалов
- 1.1 Введение
- 1.2 Классификация эксплуатационных материалов
- 1.3 Вопросы для самопроверки
- 2. Автомобильные бензины
- 2.1 Сгорание топлива в двигателе
- 2.2 Эксплуатационные требования к автомобильным бензинам
- 2.3 Свойства автомобильных бензинов
- 2.3.1 Карбюрационные свойства
- 2.3.2 Антидетонационные свойства
- 2.3.3 Коррозионные свойства
- 2.3.4 Стабильность топлива
- 2.4 Ассортимент бензинов
- 2.5 Вопросы для самопроверки
- 3. Дизельные топлива
- 3.1 Эксплуатационные требования к качеству дизельных топлив
- 3.2 Сгорание смеси и оценка самовоспламеняемости дизельных топлив
- 3.3 Показатели и свойства дизельных топлив, влияющие на подачу и смесеобразование
- 3.3.1 Низкотемпературные свойства
- 3.3.2 Вязкостные свойства
- 3.3.3 Испаряемость
- 3.4 Механические примеси и вода в дизельных топливах
- 3.5 Коррозионные свойства дизельных топлив
- 3.6 Ассортимент и маркировка дизельных топлив
- 3.7 Вопросы для самопроверки
- 4. Альтернативные виды топлив
- 4.1 Газообразные топлива
- 4.1.1 Сжиженные газы
- 4.1.2 Сжатые газы
- 4.1.3 Водород
- 4.1.4 Преимущества и недостатки применения газовых топлив
- 4.2 Синтетические спирты
- 4.3 Метилтретичнобутиловый эфир
- 4.4 Газовые конденсаты
- 4.5 Вопросы для самопроверки
- 5. Смазочные масла
- 5.1 Общие понятия о трении и износе
- 5.2 Основные требования к качеству масел
- 5.3 Свойства смазочных масел
- 5.3.1 Вязкостные свойства
- 5.3.3 Противоокислительные и диспергирующие свойства
- 5.3.4 Защитные и коррозионные свойства
- 5.4 Особенности синтетических смазочных материалов
- 5.5 Особенности работы масла в гидромеханических передачах
- 5.6 Изменение свойств масел при эксплуатации
- 5.7 Контроль качества и оценка старения масел
- 5.8 Пути снижения расхода смазочных масел
- 5.9 Существующие системы классификации смазочных масел. Взаимозаменяемость с зарубежными аналогами
- 5.9.1 Классификации моторных масел
- 5.9.1.1 Отечественная классификация моторных масел
- 5.9.1.2 Зарубежные классификации моторных масел
- 5.9.2 Классификации трансмиссионных масел
- 5.9.2.1 Отечественная классификация трансмиссионных масел
- 5.9.2.2 Зарубежная классификация трансмиссионных масел
- 5.10 Вопросы для самопроверки
- 6. Утилизация отработавших нефтепродуктов
- 6.1 Классификация нефтеотходов
- 6.2 Правила обращения с нефтеотходами
- 6.3 Методы регенерации отработанных нефтяных масел
- 6.4 Вопросы для самопроверки
- 7. Пластичные смазки
- 7.1 Общие сведения о структуре, составе и принципах производства смазок
- 7.2 Основные эксплуатационные свойства пластичных смазок
- 7.3 Ассортимент пластичных смазок и их применение
- 7.4 Вопросы для самопроверки
- 8. Технические жидкости
- 8.1 Охлаждающие жидкости
- 8.1.1 Вода, как охлаждающая жидкость
- 8.1.2 Низкозамерзающие охлаждающие жидкости
- 8.2 Жидкости для гидравлических систем
- 8.2.1 Тормозные жидкости
- 8.2.2 Амортизаторные жидкости
- 8.3 Пусковые жидкости
- 8.4 Вопросы для самопроверки
- 9 Конструкционно – ремонтные материалы и технологии их использования
- 9.1 Пластические массы
- 9.2 Клеящие материалы и герметики
- 9.3 Прокладочные материалы
- 9.4 Изоляционные материалы
- 9.5 Вопросы для самопроверки
- 10 Лакокрасочные материалы. Окраска автомобилей. Средства для ухода за автомобилем
- 10.1 Требования к лакокрасочным покрытиям
- 10.2 Строение лакокрасочного покрытия и требования к основным материалам
- 10.3 Классификация лакокрасочных материалов
- 10.4 Технология окраски кузовов автомобилей. Вспомогательные материалы
- 10.5 Химические средства для ухода за автомобилем
- 10.5.1 Моющие средства
- 10.5.2 Чистящие средства
- 10.5.3 Полирующие средства
- 10.6 Вопросы для самопроверки
- 11. Средства защиты от коррозии, технологии и области применения
- 11.2 Основные профилактические мероприятия при эксплуатации
- 11.3 Вопросы для самопроверки
- 12. Нормирование расхода топлив и смазочных материалов
- 12.1 Права, обязанности и полномочия структур управления при нормировании расхода топлив и смазочных материалов
- 12.2 Нормирование расхода топлив для автомобилей общего назначения
- 12.3 Последовательность нормирования расхода топлив для различных категорий автомобилей
- 12.3.1 Последовательность нормирования расхода топлив для легковых автомобилей
- 12.3.2 Последовательность нормирования расхода топлив для автобусов
- 12.3.3 Последовательность нормирования расхода топлив для бортовых грузовых автомобилей
- 12.3.4 Последовательность нормирования расхода топлив для самосвалов
- 12.4 Нормирование расхода топлива для специальных автомобилей
- 12.5 Нормирование расхода смазочных материалов и специальных жидкостей
- 12.6 Вопросы для самопроверки
- 13. Учёт расхода горюче-смазочных материалов. Отчётная документация в атп
- 2. Расчёт фактической себестоимости единицы топлива.
- 13.1 Учёт поступления и расходования топлива в количественном и денежном выражении
- 13.2 Расчёт фактической себестоимости единицы топлива
- 13.3 Учёт пробега автомобиля
- 13.4 Учёт расхода смазочных материалов
- 13.5 Вопросы для самопроверки
- 14 Приёмка, хранение, транспортировка, отпуск и рациональное использование эксплуатационных материалов
- 14.1 Порядок приёмки нефтепродуктов
- 14.2 Хранение нефтепродуктов
- 14.3 Транспортировка нефтепродуктов
- 14.4 Отпуск нефтепродуктов
- 14.5 Методы повышения эффективности использования горюче-смазочных материалов
- 14.6 Вопросы для самоподготовки
- Список использованных источников
- Приложение а
- Приложение б
- Приложение в