30.Регенеративный цикл для водяного пара.
Весьма существенное повышение экономичности паросиловых установок достигается путем применения в них регенеративного подогрева питательной воды за счет теплоты парообразования пара, расширяющегося в двигателе.
Простейшая схема.
П ерегретый пар из котлоагрегата 1 поступает с давлением p1 в турбину 2, где основная его часть расширяется до давления р2 и проходит в конденсатор 3. Некоторая же часть пара отбирается из промежуточной ступени турбины при давлении ротб > р2 и направляется в регенеративный подогреватель 5, где и конденсируется, отдавая свою теплоту парообразования конденсату, подаваемому в тот же регенеративный подогреватель насосом 4. Количество пара, поступающего в отбор, выбирается с таким расчетом, чтобы конденсат был подогрет до максимально возможной температуры, равной (в подогревателе смешивающего типа) температуре кипения, соответствующей давлению ротб. После смешения обоих конденсатов в подогревателе смесь подается в котлоагрегат с помощью второго насоса 6, чем и завершается цикл.
О бозначив долю пара через α (и соответственно долю пара, направляемую в конденсатор, через 1- α), определим ее из уравнения теплового баланса регенеративного подогревателя
, откуда .
здесь iотб – энтальпия пара поступающего в отбор;
i'отб – энтальпия его конденсата;
i'2 – энтальпия конденсата, поступающего из конденсатора.
Значение энтальпии iотб можно определить с помощью is-диаграммы, найдя точку 3 пересечения адиабаты расширения пара в турбине 1-2 с изобарой отбора ротб. Эта точка характеризует состояние пара в отборе, а потому она и соответствует искомой энтальпии iотб.
Работа 1 кг пара, поступающего в турбину, слагается из работы (1- α) кг пара в процессе 1-2 и работы α кг пара в процессе 1-3, т. е.
.
Соответственно этому теоретический удельный расход пара составит
, кДж/кг.
Если расход пара на турбину составляет D, кг/сек, то теоретическая мощность, вырабатываемая за счет пара, поступающего в конденсатор, составит , кВт,
а мощность, вырабатываемая за счет пара, поступающего в отбор
и общая мощность турбины будет равна , кВт.
Термический к. п. д. рассматриваемого цикла
. (12.13)
Каково бы ни было давление регенеративного отбора (конечно, при р1> ротб> р2), всегда какая то часть работы турбины совершается паром, теплота парообразования которого не теряется в конденсаторе, а полезно используется в регенеративном подогревателе, поэтому значение термического к. п. д., вычисленное по этой формуле, всегда получается большим, чем у соответствующего цикла Ренкина без регенерации.
- 20.Устройствои работа четырёхтактного карбюраторного двигателя
- 24.Термодинамический цикл двс - Тринклера
- 21.Термодинамический цикл двс – цикл Отто
- 22.Устройство и работа четырёхтактного дизеля.
- 23.Термодинамический цикл двс – цикл Дизеля
- 26.Методы повышения к.П.Д. Гту
- 27.Цикл Карно для водяного пара и его недостатки
- 28.Цикл Ренкина
- 30.Регенеративный цикл для водяного пара.
- 31.Теплофикационные циклы
- 32.Циклы бинарных парогазовых установок
- 33.Общие характеристики холодильного цикла.
- 34.Цикл воздушной холодильной установки
- 35.Цикл парокомпрессионной холодильной установки
- 35.Цикл пароэжекторной холодильной установки
- 37.Абсорбционные холодильные установки
- 38.Цикл теплового насоса