4.4. Закалка сталей
Закалка является основным видом упрочняющей термической обработки сталей.
Закалка процесс нагрева стали выше точки Ас3 (полная закалка) или Ас1 (неполная) на 30…50 С с последующим быстрым охлаждением. Цель закалки получение высокой твердости и заданных физико-механических свойств. Способность стали принимать закалку возрастает с увеличением содержания в ней углерода. При содержании углерода менее 0,2 % сталь практически не закаливается.
Доэвтектоидные стали подвергают полной закалке (Ас3 + 30…50 С), при этом обеспечивается полное превращение феррито-перлитной структуры в структуру мелкозернистого аустенита, а после охлаждения мелкокристаллического мартенсита. Неполная закалка с межкритических температур приводит к сохранению в структуре закаленной стали кристаллов доэвтектоидного феррита низкой твердости. Твердость стали после закалки будет неоднородна и существенно понижена, поэтому неполная закалка доэвтектоидных сталей применяется редко.
При нагреве заэвтектоидных сталей на 30…50 С выше температуры точки Ас1 перлит полностью превращается в аустенит, а часть вторичного цементита остается нерастворенной. Ее закалка приведет к превращению аустенита в мартенсит, зерна которого окаймлены частицами нерастворенного цементита. Такая сталь обладает повышенной твердостью и износостойкостью. Закалка заэвтектоидных сталей от температур выше Аст снижает твердость стали из-за увеличения количества остаточного аустенита и, самое главное, модет вызвать перегрев. Поэтому для заэвтектоидных сталей обычно применяется неполная закалка.
Скорость нагрева и время выдержки деталей зависят от размеров, массы деталей, их конфигурации, химического состава материала деталей, от типа нагревательных печей и нагревательных сред.
При закалке в качестве охлаждающей среды чаще всего используют воду, иногда с добавками солей, щелочей. Для увеличения охлаждающей способности применяют также масла, расплавленные соли и металлы.
Возможность упрочнения сталей путем термической обработки обусловлена наличием аллотропических превращений в твердом состоянии. Охлаждая аустенит с различными скоростями и вызывая тем самым различную степень переохлаждения, можно получить продукты распада аустенита, резко отличающиеся по строению и свойствам.
Под критической скоростью закалки Vкр понимают минимальную скорость охлаждения, обеспечивающую бездиффузионное превращение аустенита в мартенсит. Это позволяет получить неравновесную структуру с высокой твердостью 600 НВ, износостойкостью и прочностью, но низкой ударной вязкостью.
Малая скорость охлаждения V1 < Vкр приводит к образованию грубой смеси феррита и цементита, перлита с твердостью 10 HRC. Чем больше скорость охлаждения, тем более мелкодисперсная образующаяся феррито-цементитная смесь.
Сорбит (первая закалочная структура), получающийся при скорости охлаждения стали V2 > V1 представляет собой смесь феррита и цементита; он отличается от перлита более тонкодисперсным строением, твердость сорбита 20 HRC. Стали с сорбитной структурой износостойкие и используются для изготовления нагруженных изделий.
Троостит (вторая закалочная структура) получается при скорости охлаждения V3 > V2 в результате распада переохлажденного аустенита при 500…550 С, обладает значительной упругостью; представляет собой тонкодисперсную смесь феррита и цементита. Твердость троостита составляет 30 HRC.
Сталь со структурой троостита отличается высокими значениями прочности и упругости. Ее используют, главным образом, для изготовления пружин и рессор.
Превращение аустенита в мартенсит происходит при очень быстром охлаждении (Vкр). При этом мртенсит представляет собой пересыщенный твердый раствор углерода в -железе. Мартенсит твердая и хрупкая структура; твердость его 62…66 HRC.
- Раздел 1. Конструкционные материалы
- 1. Атомно-кристаллическое строение металлов
- 1.1. Кристаллические решетки металлов
- 1.2. Полиморфизм
- 1.3. Дефекты кристаллического строения реальных кристаллов
- 1.4. Кристаллизация металлов
- 2. Свойства металлов
- 2.1. Механические свойства
- Относительное удлинение
- Относительное сужение
- 2.2. Физические и химические свойства
- 2.3. Технологические свойства
- 2.4. Эксплуатационные свойства
- 3. Строение и свойства сплавов
- 3.1. Основные сведения о металлических сплавах
- 3.2. Железоуглеродистые сплавы
- Структурные составляющие железоуглеродистых сплавов
- 3.3. Диаграмма состояния FeFe3c
- 3.4. Влияние примесей на свойства железоуглеродистых сплавов
- 4. Термическая обработка стали
- 4.1. Основы термической обработки стали
- 4.2. Отжиг сталей, виды отжига
- 4.3. Нормализация сталей
- 4.4. Закалка сталей
- 4.5. Отпуск стали. Виды отпуска
- 4. 6. Химико-термическая обработка сталей
- 4.6.1. Цементация сталей
- 4.6.2. Азотирование стали
- 4.6.3. Цианирование сталей
- 4.6.4. Нитроцементация
- 4.6.5. Борирование
- 4.6.6. Диффузионная металлизация
- 4.7. Термомеханическая обработка стали
- 4. 8. Влияние нагрева на структуру и свойства деформированного металла
- 5. Чугуны
- 5.1.Классификация и маркировка
- 5.2. Свойства и применение чугуна
- 6. Стали.
- 6.1. Углеродистые стали. Классификация и маркировка
- Влияние углерода и примесей на свойства углеродистой стали
- 6.2. Легированные стали и сплавы
- 6.2.1. Влияние легирующих элементов на свойства стали
- 6.2.2. Конструкционные легированные стали, их маркировка
- Рессорно-пружинные стали
- Шарикоподшипниковые стали
- 6.3. Инструментальные стали
- 6.3.1. Стали для измерительных инструментов
- 6.3.2. Стали для режущих инструментов
- 6.3.3. Инструментальные твердые сплавы
- 6.3.4. Штамповые стали
- 6.4. Стали и сплавы с особыми свойствами
- 6.4.1. Нержавеющие стали и сплавы
- 6.4.2. Хромистые нержавеющие стали
- 6.4.3. Хромоникелевые нержавеющие стали
- 6.4.4. Жаропрочные стали и сплавы
- 6.4.5. Жаропрочные сплавы на основе никеля и тугоплавких металлов
- 6.4.6. Жаростойкие стали и сплавы
- 6.4.7. Тугоплавкие металлы и сплавы на их основе
- 7. Цветные металлы и сплавы
- 7.1. Алюминий и его сплавы
- 7.2. Магний и его сплавы
- 7.3. Титан и его сплавы
- 7.4. Медь и ее сплавы
- 8. Неметаллические материалы
- 8.1. Пластмассы
- Состав, классификация и свойства пластмасс
- 8.2. Резиновые материалы
- 9. Композиционные материалы Классификация композиционных материалов
- 9 .1. Армирующие материалы
- 9.2. Материалы матриц
- 9.3. Свойства композиционных материалов
- 10. Общие принципы выбора материалов
- Физико-химические свойства
- Механические свойства