logo
Отраслевая структура промышленности

Базовые технологии в химической промышленности. Кислота!(пример)

Химическая промышленность объединяет производства, в которых преобладают химические методы переработки сырья и материалов. Сюда входят предприятия, производящие неорганические кислоты, соли, щелочи, минеральные удобрения, каучуки, смолы, пластические массы и многие другие продукты. В настоящее время трудно найти область народного хозяйства, где бы ни использовались достижения химической промышленности.

Химические материалы широко применяются в машиностроении (пластмассы, лаки, клеи, герметики, резины), сельском хозяйстве (удобрения и ядохимикаты), здравоохранении (лекарства, витамины, материалы для хирургии) и т.д.

В отрасль химической промышленности входят разнообразные предприятия, отличающиеся как технологическими процессами, так и конечными продуктами производства.

Всю химическую продукцию можно разделить на следующие классификационные группы:

1. Неорганические вещества, включающие следующие основные продукты: аммиак; неорганические кислоты (серная, азотная, соляная); содовые продукты; щелочи; минеральные удобрения и ядохимикаты; силикаты (строительная керамика, вяжущие вещества, стекло).

2. Органические вещества: продукция переработки твердых топлив; продукция переработки жидких топлив; продукция переработки газообразных топлив.

3. Продукты органического синтеза: пластические массы; химические волокна; каучук и резина; лакокрасочные материалы.

4. Химические реактивы и особо чистые вещества.

5. Медикаменты и химико-фармацевтическая продукция.

Продукция химической промышленности используется в ряде отраслей народного хозяйства как исходный материал. Поэтому качество химических продуктов должно соответствовать требованиям государственных стандартов (ГОСТов). Качество химической продукции зависит как от качества применяемого исходного сырья, так и в значительной степени от уровня технологии ее производства.

Наиболее применяемыми неорганическими кислотами являются серная, азотная и соляная. Из них серной принадлежит особое место. По объему производства и области применения серная кислота занимает одно из первых мест среди химической промышленности. Серная кислота используется в самых разнообразных отраслях производства.

В настоящее время в промышленности серную кислоту получают двумя способами — нитрозным и контактным. В обоих случаях сущность процесса сводится к окислению сернистого газа S02 до серного S0з и соединению трехокиси с водой.

В обычных условиях сернистый газ кислородом воздуха не окисляется, поэтому процесс окисления осуществляется либо при помощи азота, либо в присутствии твердого катализатора. Способ окисления и определяет технологию процесса. При нитрозном способе двуокись окисляют до S0з при помощи нитрозной смеси, состоящей из окиси и двуокиси азота, взятых в соотношении 1:1. Контактный способ состоит в окислении двуокиси в присутствии твердого катализатора.

Более старым является нитрозный способ производства серной кислоты. Нитрозный способ трудно поддается автоматизации. Кроме того, получаемая кислота имеет концентрацию не более 75— 77% и загрязнена примесями. Эти недостатки привели к тому, что нитрозный способ производства серной кислоты все больше утрачивает свое значение, а преимущественное развитие получает контактный метод.

Технология контактного процесса предусматривает окисление сернистого газа в присутствии твердых катализаторов. До 20—30-х годов в качестве катализатора использовали платину. Затем она была заменена значительно более дешевым и устойчивым катализатором, изготавливаемым из пятиокиси ванадия V2O5.

При контактном способе производства может быть получена серная кислота практически любой концентрации и высокой степени чистоты. Такая кислота может быть использована в любом производстве.

Масштабы производства соляной кислоты меньше по сравнению с серной и азотной. Ее употребляют при производстве различных хлористых солей, в процессе гидролиза клетчатки, при травлении металлов, при пайке, лужении и т.д.

Соляная кислота представляет собой раствор хлористого водорода в воде. Хлористый водород НСI — это бесцветный газ с резким запахом, хорошо растворимый в воде. В промышленности он может быть получен двумя способами: прямым синтезом из Н2 и СI2 и при хлорировании органических соединений.

Наибольшее распространение в промышленности получил метод прямого синтеза хлористого водорода из газообразных хлора и водорода, получаемых при электролизе растворов поваренной соли.

Реакция между хлором и водородом СI2 + Н2 = 2НСI протекает только на свету и при нагревании. Она относится к типу цепных и может привести к взрыву, если смешивать большие объемы исходных компонентов. Спокойное течение реакции обеспечивается непрерывным поступлением струи газов в зону высокой температуры (до 2400 °С). Процесс ведется в специальных печах с охлаждением воздухом или водой.

Большое количество хлористого водорода образуется в процессе синтеза органических соединений, например, при хлорировании бензола для получения хлорбензола:

C6H6 + СI2 = С6Н5СI + НСI.

Азотная кислота по значению и объему производства занимает второе место после серной. Она широко применяется при производстве удобрений, взрывчатых веществ, ракетного топлива, синтетических красителей, пластмасс, нитроцеллюлозы, синтетических волокон и т.д. По внешнему виду азотная кислота представляет собой тяжелую бесцветную жидкость с удельным весом 1,52 г/см3, химический состав ее выражается формулой НNОз.

Промышленное получение азотной кислоты осуществляется окислением синтетического аммиака. Процесс осуществляется в три стадии:

1) окисление аммиака кислородом воздуха до окиси азота в присутствии катализатора (платины и ее сплавов);

2) окисление окиси азота до двуокиси;

3) поглощение N02 водой с образованием азотной кислоты.

Окисление аммиака до окиси азота протекает с достаточной скоростью лишь при высоких температурах. При этом возможны побочные реакции, приводящие к выделению не окиси азота, а свободного азота или его закиси. Чтобы предотвратить эти реакции, необходимо вести окисление при температурах не выше 700—800 °С в присутствии катализатора. Последний изготавливается в виде сеток из очень тонкой проволоки диаметром 0,06—0,09 мм.

Данный способ производства азотной кислоты позволяет получить кислоту концентрацией 48—50%. Для получения более концентрированного продукта процесс ведут при повышенном давлении. Применение давления до 10 ат. позволяет повысить концентрацию азотной кислоты до 60—62%.

В настоящее время в производстве различают три технологические схемы получения азотной кислоты:

1) под атмосферным давлением;

2) под давлением до 10 ат;

3) комбинированная.

Схема под давлением в принципе не отличается от схемы под атмосферным давлением, но объем окислительных и абсорбционных аппаратов значительно меньше. Процесс окисления окиси азота до двуокиси протекает намного быстрее и возрастает степень абсорбции окислов водой. Вместе с тем при увеличении давления в процессе окисления аммиака возрастают потери дорогостоящего катализатора, что является недостатком этой схемы.

Комбинированный способ позволяет использовать достоинства обеих схем. При нем окисление аммиака осуществляется при атмосферном давлении, что резко снижает потери платины, а окисление нитрозных газов до двуокиси и абсорбция их проводятся под давлением. Это позволяет получать кислоту концентрацией 60 — 62%. На установках комбинированного способа применяют давление до 4—9 ат.