logo
Otchet_po_seminaram (2,48)

3.1 Описание объекта управления

Объект управления представляет собой энергоблок АЭС с реактором ВВЭР-1000, в состав которого входят: корпус ядерного реактора, внутрикорпусные устройства (ВКУ) - шахта, выгородка, блок защиты труб (БЗТ); верхний блок (ВБ); приводы для перемещения ПС СУЗ; каналы нейтронного измерения (КНИ); активная зона (комплект ТВС). Также в состав энергоблока входят: турбина К-1000-60/1500-2 ЛМЗ, предназначенная для работы на насыщенном паре, главные циркуляционные насосы, парогенератор ПГВ-1000. Питательно-конденсатный тракт энергоблока включает в себя конденсатор, 4 подогревателя низкого давления, деаэратор питательной воды, 1 подогреватель высокого давления, парогенератор.

На рисунке 2.1 приведена схема барабанного парогенератора энергоблока АЭС с ВВЭР-1000.

Рис. 2.1 - Схема барабанного парогенератора АЭС с ВВЭР-1000

В корпусе парогенератора 1 находится вода второго контура. Нагрев воды осуществляется трубчаткой 8, через которую прокачивается горячий теплоноситель первого контура, поступающий в патрубок 9 и отводимый через патрубок 10. Образующийся в корпусе пар сепарируется от влаги в паровом пространстве 7 и по паропроводам 4 направляется на турбину. Питательная вода подается по паропроводу 6.

Подъем уровня воды в парогенераторе может привести к забросу воды в турбину; снижение уровня здесь менее опасно, чем в реакторах, однако оно приводит к оголению верхней части трубчатки, уменьшению поверхности теплообмена и нежелательному повышению температуры воды первого контура на входе в реактор.

Во всех подобных схемах поддержание уровня осуществляется путем изменения подачи питательной воды. В стационарных условиях подача питательной воды должна быть равна расходу пара (если из регулируемой емкости часть воды забирается на продувку, то расход питательной воды должен быть соответственно увеличен). Регулирование в переменных режимах осложняется из-за наличия так называемого «вспухания». Например, если увеличить приток теплоты к жидкости при постоянном расходе питательной воды Dпв, то это приводит к временному подъему уровня, а затем к его падению. В силу того характера изменения уровня, регулирование уровня одноимпульсным регулятором 2 (рисунок 2.2), увеличивающим расход питательной воды при снижении уровня 3 и уменьшающим расход при подъеме уровня, неэффективно.

Рис. 2.2 - Одноимпульсная схема регулирования уровня

Такой регулятор при увеличении тепловой мощности из-за вспухания уровня в первый момент уменьшит расход воды, что через некоторое время приведет к падению уровня, большему чем без регулирования. С другой стороны при возмущении изменением расхода питательной воды (например, при изменении режима работы насосов) сигнал на вход одноимпульсного регулятора придет со значительным запаздыванием, что также ухудшает динамическую точность АСР.

В значительной мере эти недостатки ликвидируются при использовании трехимпульсной схемы регулирования рисунок 2.3.

Рис 2.3. Трехимпульсная схема регулирования уровня.

В такой схеме исполнительный механизм питательного клапана 1 управляется регулятором 2, на вход которого подаются сигналы по уровню 3, расходу пара 4 и расходу питательной воды 5. Знаки сигналов выбираются так, чтобы открытие клапана происходило при снижении уровня и расхода воды и увеличении расхода пара. Коэффициенты усиления каналов по расходу воды и пара берутся равными. Поэтому в стационарном режиме эти сигналы уравновешиваются и нулевой сигнал на входе регулятора будет только при значении уровня, равном заданному.

Рассмотрим работу трехимпульсного регулятора при различных возмущениях. При мгновенном изменении расхода питательной воды сигнал на входе в регулятор появляется практически мгновенно и будет отработан регулятором еще до того, как заметно отклонится уровень. Аналогично при возмущении тепловой мощностью на входе в регулятор сразу же появляется сигнал увеличения расхода пара, требующий уже в первый момент увеличения расхода воды.

Настройка трехимпульсного регулятора уровня начинается с настройки контура регулирования питательной воды при отключенных сигналах 4 и 5. Оптимальные настройки регулятора 2 в этом режиме сильно зависят от конкретных особенностей объекта (инерции расходомера, люфтов в исполнительном механизме и т.п.) трудно поддающихся расчету. Поэтому обычно этот контур настраивается непосредственно на объекте, без предварительных теоретических расчетов. После определения коэффициента усиления канала по расходу воды устанавливается равный ему коэффициент по расходу пара. Контур регулирования расхода воды мало инерционен, и при определении коэффициента усиления по уровню можно считать, что расход воды мгновенно устанавливается равным суммарному значению расхода пара отклонения уровня. Тогда регулятор 2 при подаваемом ему на вход сигнале 5 можно рассматривать как пропорциональный регулятор, изменяющий расход воды пропорционально отклонению уровня 3 от его заданного значения.