Влияние углерода и примесей на свойства углеродистой стали
Углерод оказывает сильное влияние на свойства стали. С увеличением его содержания повышаются твердость и прочность стали, снижаются пластичность и вязкость.
Временное сопротивление В достигает максимального значения при содержании углерода приблизительно 0,9 %. Появление в структуре стали вторичного цементита снижает ее пластичность и прочность.
Марганец и кремний вводят в сталь для ее раскисления в процессе плавки. Эти элементы заметно влияют на свойства стали, повышая прочность, твердость и снижая пластичность. Однако принимая во внимание, что содержание марганца и кремния в обычных сталях приблизительно одинаково, их влияние на свойства сталей разного состава не учитывается.
Сера попадает в сталь из чугуна при его переделе в сталь. Она не растворима в железе и образует с ним сульфид железа FeS, который в виде эвтектики FeFeS располагается по границам зерен и имеет температуру плавления 988 С. При нагревании свыше 800 С сульфиды делают сталь хрупкой и она может разрушиться при горячей пластической деформации. Это явление называется красноломкостью, так как резкое снижение пластичности происходит в районе температур красного каления. Красноломкость можно предотвратить повышением содержания в стали марганца.
При температуре горячей обработки (800…1200 С) сульфид марганца не плавится, пластичен и под действием внешних сил вытягивается в направлении деформации. Вытянутая форма включений сульфида марганца (сульфидная строчечность) увеличивает анизотропию свойств и снижает пластичность и вязкость стали примерно в 2 раза поперек прокатки, но не влияет на свойства в направлении вдоль прокатки.
Для улучшения формы сульфидных включений жидкую сталь обрабатывают (модифицируют) силикокальцием или редкоземельными элементами (Ce, La, Nd). Эти модификаторы образуют с серой компактные округлые соединения, которые сохраняют свою форму при деформации, вследствие чего уменьшается анизотропия свойств.
Сера является нежелательным элементом, и ее содержание в стали строго ограничивают. Она оказывает благоприятное влияние только в том случае, когда требуется хорошая обрабатываемость стали при резании.
Фосфор попадает в сталь на стадии металлургического передела. Находясь в феррите, фосфор резко повышает температуру перехода стали в хрупкое состояние. Это явление называется хладноломкостью. Содержание фосфора в сталях в зависимости от их назначений ограничивается в пределах 0,025…0,06 %.
Азот и кислород содержатся в стали в небольших количествах и присутствуют в виде неметаллических включений (оксиды, нитриды), которые усиливают анизотропию механических свойств, особенно пластичности и вязкости, и вызывают охрупчивание стали.
Присутствие большого количества водорода в стали в растворенном состоянии ее охрупчивает и способствует возникновению внутренних надрывов в металле, называемых флокенами.
- Раздел 1. Конструкционные материалы
- 1. Атомно-кристаллическое строение металлов
- 1.1. Кристаллические решетки металлов
- 1.2. Полиморфизм
- 1.3. Дефекты кристаллического строения реальных кристаллов
- 1.4. Кристаллизация металлов
- 2. Свойства металлов
- 2.1. Механические свойства
- Относительное удлинение
- Относительное сужение
- 2.2. Физические и химические свойства
- 2.3. Технологические свойства
- 2.4. Эксплуатационные свойства
- 3. Строение и свойства сплавов
- 3.1. Основные сведения о металлических сплавах
- 3.2. Железоуглеродистые сплавы
- Структурные составляющие железоуглеродистых сплавов
- 3.3. Диаграмма состояния FeFe3c
- 3.4. Влияние примесей на свойства железоуглеродистых сплавов
- 4. Термическая обработка стали
- 4.1. Основы термической обработки стали
- 4.2. Отжиг сталей, виды отжига
- 4.3. Нормализация сталей
- 4.4. Закалка сталей
- 4.5. Отпуск стали. Виды отпуска
- 4. 6. Химико-термическая обработка сталей
- 4.6.1. Цементация сталей
- 4.6.2. Азотирование стали
- 4.6.3. Цианирование сталей
- 4.6.4. Нитроцементация
- 4.6.5. Борирование
- 4.6.6. Диффузионная металлизация
- 4.7. Термомеханическая обработка стали
- 4. 8. Влияние нагрева на структуру и свойства деформированного металла
- 5. Чугуны
- 5.1.Классификация и маркировка
- 5.2. Свойства и применение чугуна
- 6. Стали.
- 6.1. Углеродистые стали. Классификация и маркировка
- Влияние углерода и примесей на свойства углеродистой стали
- 6.2. Легированные стали и сплавы
- 6.2.1. Влияние легирующих элементов на свойства стали
- 6.2.2. Конструкционные легированные стали, их маркировка
- Рессорно-пружинные стали
- Шарикоподшипниковые стали
- 6.3. Инструментальные стали
- 6.3.1. Стали для измерительных инструментов
- 6.3.2. Стали для режущих инструментов
- 6.3.3. Инструментальные твердые сплавы
- 6.3.4. Штамповые стали
- 6.4. Стали и сплавы с особыми свойствами
- 6.4.1. Нержавеющие стали и сплавы
- 6.4.2. Хромистые нержавеющие стали
- 6.4.3. Хромоникелевые нержавеющие стали
- 6.4.4. Жаропрочные стали и сплавы
- 6.4.5. Жаропрочные сплавы на основе никеля и тугоплавких металлов
- 6.4.6. Жаростойкие стали и сплавы
- 6.4.7. Тугоплавкие металлы и сплавы на их основе
- 7. Цветные металлы и сплавы
- 7.1. Алюминий и его сплавы
- 7.2. Магний и его сплавы
- 7.3. Титан и его сплавы
- 7.4. Медь и ее сплавы
- 8. Неметаллические материалы
- 8.1. Пластмассы
- Состав, классификация и свойства пластмасс
- 8.2. Резиновые материалы
- 9. Композиционные материалы Классификация композиционных материалов
- 9 .1. Армирующие материалы
- 9.2. Материалы матриц
- 9.3. Свойства композиционных материалов
- 10. Общие принципы выбора материалов
- Физико-химические свойства
- Механические свойства