Основные определения и задачи автоматизированного производства
Механизацией производственного процесса называют применение энергии неживой природы в производственном процессе или его составных частях, полностью управляемых людьми, и осуществляемое в целях сокращения трудовых затрат, улучшения условий производства.
Автоматизацией производственного процесса называют применение энергии неживой природы в производственном процессе или его составных частях для их выполнения и управления ими (в течение определенного периода времени) без непосредственного участия людей.
Различают автоматизацию производства трех уровней: частичную, комплексную и полную.
Автомат (от греческого automates – самодействующий) является самостоятельно действующим устройством или совокупностью устройств, выполняющих по заданной программе, без непосредственного участия человека, процессы, которые осуществляют передачу, использование и преобразование энергии, материалов или информации.
Современное технологическое оборудование, предназначенное для преобразования формы, размеров и свойств заготовок, также преобразует информацию (программу обработки, результаты измерения размеров заготовок и т.д. ). С повышением уровня автоматизации роль информационных процессов в производстве все более повышается, чем объясняется возрастающее применение вычислительной техники на базе персональных мини – ЭВМ, как для проектирования, так и для управления производством.
Последовательность выполняемых автоматом запрограммированных действий называют рабочим циклом. Если для возобновления рабочего цикла требуется вмешательство рабочего, то такое устройство называют полуавтоматом.
Процесс, оборудование или производство, не требующие присутствия человека в течение определенного промежутка времени для выполнения ряда повторяющихся рабочих циклов, называют автоматическим. Если часть процесса выполняется автоматически, а другая часть требует присутствия оператора, то такой процесс называют автоматизированным.
Под безлюдным режимом работы понимают такую степень автоматизации, при которой станок, производственный участок, цех или весь завод могут работать автоматически в течение, по крайней мере, одной производственной смены в отсутствие человека.
Технические преимущества автоматически управляемых производственных систем по сравнению с аналогичными системами с ручным управлением следующие: более высокое быстродействие, позволяющее повышать скорости протекания процессов, следовательно и производительность производственного оборудования; более высокое и стабильное качество управления процессами, обеспечивающее высокое качество продукции при более экономном расходовании материалов и энергии; возможность работы автоматов в тяжелых, вредных и опасных для человека условиях; стабильность ритма работы, возможность длительной работы без перерывов вследствие отсутствия утомляемости, свойственной человеку.
Человек, управляющий оборудованием, обладает определенной инерционностью. Время инерционности человека определяется задержкой его реакции от момента появления сигнала до момента окончания ответного воздействия. При управлении промышленным оборудованием время инерционности человека порядка 0,8…1 секунда, а, например, такт выпуска аэрозольного клапана, собираемого на автоматической роторно-конвейерной линии, составляет всего 0,06 секунд. Так как скорость протекания производственных процессов велика и имеет постоянную тенденцию к увеличению, время запаздывания оператора становится лимитирующим фактором в дальнейшем повышении производительности. Высокое быстродействие автоматических систем объясняется отсутствием столь большого времени запаздывания, которое свойственно оператору, управляющему процессом.
Автоматы могут работать в тяжелых, вредных и опасных для здоровья человека условиях. При автоматизации производства исключаются или существенно снижаются отрицательные воздействия производственного процесса на человека, поскольку человек заменяется автоматом.
Экономические преимущества, достигаемые при использовании автоматизации в производстве, являются следствием технических преимуществ. К ним можно отнести: возможность значительного повышения производительности труда; более экономичное использование ресурсов; более высокое и стабильное качество продукции; сокращение периода времени от начала проектирования до получения готового изделия; возможность расширения производства без увеличения трудовых ресурсов.
Повышение производительности труда при автоматизации производства может быть достигнуто следующим образом: во-первых, благодаря более полному использованию календарного времени при круглосуточной автоматической работе оборудования; во-вторых, вследствие повышения скорости протекания процессов, которая не ограничивается возможностями человека; в-третьих, вследствие высвобождения обслуживающего персонала.
Автоматизация производства позволяет более экономично использовать труд, материалы, энергию. Автоматическое (автоматизированное) планирование и оперативное управление производством обеспечивают оптимальные организационные решения, сокращают запасы незавершенного производства.
Автоматическое (автоматизированное) регулирование процесса предотвращает потери вследствие поломок инструментов и вынужденных простоев оборудования.
Автоматизация проектирования и изготовления продукции с использованием персональных мини-ЭВМ, объединенных в единую сеть, позволяет значительно сократить количество бумажных документов: чертежей, схем, графиков и технологических процессов.
- Автоматизация производственных процессов в машиностроении
- Утверждено редакционно-издательским советом университета
- 1. Информация о дисциплине
- 1.1. Предисловие
- Содержание дисциплины и виды учебной работы
- Содержание дисциплины по гос
- Объем дисциплины и виды учебной работы
- 1.2.3. Перечень видов практических занятий и контроля:
- 2. Рабочие учебные материалы
- 2.1. Рабочая программа (объем 180 часов)
- Раздел 1. Автоматизированный производственный
- 1.1. Основные определения и задачи
- 1.2. Основные характеристики автоматизированного производственного процесса (26 часов)
- Раздел 2. Элементная технология автоматизированных
- 2.1. Автоматические и специализированные станки,
- 2.2. Станки с числовым программным управлением (30 часов)
- Раздел 3. Комплексная автоматизация
- 3.1. Гибкие производственные системы (24 часа)
- 3.2. Автоматизация процесса сборки (20 часов)
- 3.3. Автоматизированная система управления (20 часов)
- 2.2. Тематический план дисциплины
- 2.2.1. Тематический план дисциплины для студентов очной формы обучения
- 2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- 2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- 2.3. Структурно-логическая схема дисциплины
- Раздел 2.
- Раздел 3.
- Раздел 1.
- 2.4. Временной график изучения дисциплины
- 2 25 .5. Практический блок
- 2.5.1. Практические занятия
- 2.5.1.1. Практические занятия (очная форма обучения)
- 2.5.1.2. Практические занятия (очно-заочная форма обучения)
- 2.5.1.3. Практические занятия (заочная форма обучения)
- 2.5.2. Лабораторный практикум
- 2.5.2.1. Лабораторные работы (очная форма обучения)
- 2.5.2.2. Лабораторные работы (очно-заочная форма обучения)
- 2.5.2.3. Лабораторные работы (заочная форма обучения)
- 2.6. Балльно - рейтинговая система
- Итоговая оценка результатов обучения
- 3. Информационные ресурсы дисциплины
- Библиографический список
- Опорный конспект Введение
- Раздел 1. Автоматизированный производственный процесс в машиностроении
- Основные определения и задачи автоматизированного производства
- Вопросы для самопроверки
- 1.2. Основные характеристики автоматизированного производственного процесса
- Nруч Nавт Nполатв
- Дитель-
- Вопросы для самопроверки
- Раздел 2. Элементная технология автоматизированных производств
- 2.1. Автоматические и специализированные станки, автоматические линии
- Для обработки корпусных деталей:
- Вопросы для самопроверки
- 2.2. Станки с числовым программным управлением
- Относительно «реперной» точки о на размер по осям х и z
- Датчиками касания (дк) на станке с чпу
- Вопросы для самопроверки
- Раздел 3. Комплексная автоматизация производственных систем
- 3.1. Гибкие производственные системы
- Столом: 1 - инструментальный магазин; 2 – обрабатывающий центр;
- Вопросы для самопроверки
- 3.2. Автоматизация процесса сборки
- Вопросы для самопроверки
- 3.3. Автоматизированная система управления
- Вопросы для самопроверки
- Заключение
- Глоссарий (краткий словарь терминов)
- 3.4. Методические указания к выполнению лабораторных работ
- 3.4.1. Общие указания
- 3.4.2. Охрана труда и техника безопасности
- III. Описание схемы установки и пояснения к ее элементам
- Мод. 1к62 и для станка с чпу мод. 1720пф30
- IV. Порядок выполнения работы
- III. Описание схемы установки и пояснения к ее элементам
- IV. Порядок выполнения работы
- 4. Блок контроля освоения дисциплины
- 4.1. Общие указания
- Методические указания к выполнению курсовой работы
- Блок тестов текущего (промежуточного) контроля
- Блок итогового контроля за семестр
- 4.2. Задание на курсовую работу и методические указания к ее выполнению
- 4.2.1. Задание на курсовую работу
- 4.2.2. Методические указания к выполнению курсовой работы
- Порядок выполнения работы
- 1. Структура и состав технологических компонентов и подсистем гау для обработки корпусных деталей
- 2. Расчет уровня автоматизации всех подсистем гпс
- 3. Автоматизированная система инструментального обеспечения (асио)
- 4. Обоснование системы контроля в гау
- 5. Расчет грузонапряженности гау
- 6. Структурная схема №1 управления гау
- 6.1. Спецификация к рис.2
- 6.2. Спецификация к рис.3 - 6
- 4.3. Текущий контроль Тренировочные тесты Тест № 1
- Тест № 2
- Тест № 3
- Правильные ответы на тренировочные тесты текущего контроля
- 4.4. Итоговый контроль Вопросы для подготовки к экзамену
- Алгоритм гпк механообработки
- Автоматизация производственных процессов в машиностроении
- Приложение 3
- Содержание
- Информация о дисциплине ..…………………………………………………3
- Рабочие учебные материалы ………………………………………………...6