7.1 Общая характеристика систем контроля. Датчики и преобразователи
В основе автоматического управления — непрерывное и точное измерение входных и выходных технологических параметров процесса обогащения.
Следует различать основные выходные параметры процесса (или конкретной машины), характеризующие конечную цель процесса, например, качественно-количественные показатели продуктов переработки, и промежуточные (косвенные) технологические параметры, определяющие условия протекания процесса, режимы работы оборудования. Например, для процесса обогащения угля в отсадочной машине, основными выходными параметрами могут быть выход и зольность выпускаемых продуктов. В тоже время на указанные показатели влияет ряд промежуточных факторов, например, высота и разрыхленность постели в отсадочной машине.
Кроме того, существует ряд параметров, характеризующих техническое состояние технологического оборудования. Например, температура подшипников технологических механизмов; параметры централизованной жидкой смазки подшипников; состояние перегрузочных узлов и элементов поточно-транспортных систем; наличие материала на ленте конвейера; присутствие металлических предметов на ленте конвейера, уровни материала и пульпы в емкостях; длительность работы и время простоев технологических механизмов и т.д.
Особую трудность вызывает автоматический оперативный контроль технологических параметров, определяющих характеристику сырья и продуктов обогащения, таких как зольность, вещественный состав руды, степень раскрытия минеральных зерен, гранулометрический и фракционный состав материалов, степень окисленности поверхности зерен и пр. Данные показатели или контролируются с недостаточной точностью или не контролируются совсем.
Большое число физических и химических величин, определяющих режимы процессов переработки сырья, контролируется с достаточной точностью. К ним можно отнести плотность и ионный состав пульпы, объемные и массовые расходы технологических потоков, реагентов, топлива, воздуха; уровни продуктов в машинах и аппаратах, температура среды, давление и разряжение в аппаратах, влажность продуктов и т.д.
Таким образом, многообразие технологических параметров, их важность при управлении процессами обогащения требуют разработки надежно действующих систем контроля, где оперативное измерение физико-химических величин основано на самых различных принципах.
Нужно отметить, что надежность работы систем контроля параметров в основном определяет работоспособность систем автоматического управления процессами.
Системы автоматического контроля служат основным источником информации при управлении производством, в том числе в АСР и АСУТП.
Датчики и преобразователи
Основным элементом систем автоматического контроля, который определяет надежность и работоспособность всей системы, является датчик, непосредственно контактирующий с контролируемой средой.
Датчиком называется элемент автоматики, осуществляющий преобразование контролируемого параметра в сигнал, пригодный для ввода его в систему контроля или управления.
Типовая система автоматического контроля в общем случае включает первичный измерительный преобразователь (датчик), вторичный преобразователь, линию передачи информации (сигнала) и регистрирующий прибор (рис. 7.1). Зачастую система контроля имеет только чувствительный элемент, преобразователь, линию передачи информации и вторичный (регистрирующий) прибор.
Датчик, как правило, содержит чувствительный элемент, воспринимающий величину измеряемого параметра, а в некоторых случаях и преобразующий ее в сигнал, удобный для дистанционной передачи на регистрирующий прибор, а при необходимости – в систему регулирования.
Примером чувствительного элемента может быть мембрана дифференциального манометра, измеряющего разность давлений на объекте. Перемещение мембраны, вызванное усилием от разности давлений, преобразуется с помощью дополнительного элемента (преобразователь) в электрический сигнал, который легко передается на регистратор.
Другой пример датчика – термопара, где совмещены функции чувствительного элемента и преобразователя, так как на холодных концах термопары возникает электрический сигнал, пропорциональный измеряемой температуры.
Подробнее о датчиках конкретных параметров будет изложено ниже.
Преобразователи классифицируются на однородные и неоднородные. Первые имеют одинаковые по физической природе входную и выходную величину. Например, усилители, трансформаторы, выпрямители – преобразуют электрические величины в электрические с другими параметрами.
Среди неоднородных самую большую группу составляют преобразователи неэлектрических величин в электрические (термопары, терморезисторы, тензометрические датчики, пьезоэлементы и пр.).
По виду выходной величины данные преобразователи подразделяются на две группы: генераторные, имеющие на выходе активную электрическую величину – ЭДС и параметрические – с пассивной выходной величиной в виде R, L или С.
Преобразователи перемещения. Наибольшее распространение получили параметрические преобразователи механического перемещения. К ним относятся R (резисторные), L (индуктивные) и С (емкостные) преобразователи. Данные элементы изменяют пропорционально входному перемещению выходную величину: электрическое сопротивление R, индуктивность L и емкость С (рис. 7.2).
Индуктивный преобразователь может быть выполнен в виде катушки с отводом от средней точки и перемещающимся внутри плунжером (сердечником).
Рассматриваемые преобразователи обычно подключаются к системам контроля с помощью мостовых схем. В одно из плеч моста (рис. 7.3 а) подключается преобразователь перемещения. Тогда выходное напряжение (Uвых), снимаемое с вершин моста А-В, будет изменяться при перемещении рабочего элемента преобразователя и может быть оценено выражением:
(7.1)
Напряжение питания моста (Uпит) может быть постоянного (при Zi=Ri) или переменного (при Zi =1/(Cω) или Zi =Lω) тока с частотой ω.
В мостовую схему с R элементами могут подключаться терморезисторы, тензо- и фоторезисторы, т.е. преобразователи выходной сигнал которых – изменение активного сопротивления R.
Широко применяемый индуктивный преобразователь обычно подключается к мостовой схеме переменного тока, образованной трансформатором (рис. 7.3 б). Выходное напряжение в этом случае выделяется на резисторе R, включенном в диагональ моста.
Особую группу составляют широко применяемые индукционные преобразователи - дифференциально-трансформаторные и ферро-динамические (рис. 7.4). Это – генераторные преобразователи.
Выходной сигнал (Uвых) данных преобразователей формируется в виде напряжения переменного тока, что исключает необходимость применения мостовых схем и дополнительных преобразователей.
Дифференциальный принцип формирования выходного сигнала в трансформаторном преобразователе (рис. 6.4 а) основан использовании двух вторичных обмоток, включенных навстречу друг другу. Здесь выходной сигнал – векторная разница напряжений, возникающих во вторичных обмотках при подаче напряжения питания Uпит, при этом выходное напряжение несет две информации: абсолютное значение напряжения – о величине перемещения плунжера, а фаза – направление его перемещения:
Ūвых = Ū1 – Ū2 = kХвх,
где k – коэффициент пропорциональности;
Хвх – входной сигнал (перемещение плунжера).
Дифференциальный принцип формирования выходного сигнала увеличивает чувствительность преобразователя в два раза, так как при перемещении плунжера, например, вверх, растет напряжение в верхней обмотке (Ū1) из-за роста коэффициента трансформации, на столько же снижается напряжение в нижней обмотке (Ū2).
Дифференциально-трансформаторные преобразователи получили широкое распространение в системах контроля и регулирования благодаря своей надежности и простоты. Их размещают в первичных и вторичных приборах измерения давления, расхода, уровней и пр.
Более сложными является ферродинамические преобразователи (ПФ) угловых перемещений (рис. 7.4 б и 7.5).
Здесь в воздушном зазоре магнитопровода (1) помещен цилиндрический сердечник (2) с обмоткой в виде рамки. Сердечник установлен с помощью кернов и может поворачиваться на небольшой угол αвх в пределах ± 20о. На обмотку возбуждения преобразователя (w1) подается переменное напряжение 12 – 60 В, в результате чего возникает магнитный поток, пересекающий площадь рамки (5). В ее обмотке индуцируется ток, напряжение которого (Ūвых) при прочих равных условиях пропорционально углу поворота рамки (αвх), а фаза напряжения изменяется при повороте рамки в ту или иную сторону от нейтрального положения (параллельно магнитному потоку).
Статические характеристики преобразователей ПФ показаны на рис. 7.6.
Характеристику 1 имеет преобразователь без включенной обмотки смещения (Wсм). Если нулевое значение выходного сигнала нужно получить не в среднем, а в одном из крайних положений рамки, следует включить обмотку смещения последовательно с рамкой.
В этом случае выходной сигнал – сумма напряжений снимаемых с рамки и обмотки смещения, чему соответствует характеристика 2 или 2', если изменить подключение обмотки смещения на противофазное.
Важным свойством ферродинамического преобразователя является возможность изменения крутизны характеристики. Это достигается изменением величины воздушного зазора (δ) между неподвижным (3) и подвижным (4) плунжерами магнитопровода, ввинчивая или вывинчивая последний.
Рассмотренные свойства преобразователей ПФ используют при построении относительно сложных систем регулирования с выполнением простейших вычислительных операция.
Общепромышленные датчики физических величин.
Эффективность процессов обогащения во многом зависит от технологических режимов, которые в свою очередь определяются значениями параметров, влияющих на эти процессы. Многообразие обогатительных процессов обуславливает большое количество технологических параметров, требующих своего контроля. Для контроля некоторых физических величин достаточно иметь стандартный датчик с вторичным прибором (например, термопара - автоматический потенциометр), для других необходимы дополнительные устройства и преобразователи (плотномеры, расходомеры, золомеры и пр.).
Среди большого количества промышленных датчиков можно выделить датчики, широко применяемые в различных отраслях промышленности в качестве самостоятельных источников информации и как составные элементы более сложных датчиков.
В данном подразделе рассмотрим наиболее простые общепромышленные датчики физических величин.
Датчики температуры. Контроль тепловых режимов работы котлоагрегатов, сушильных установок, некоторых узлов трения машин позволяет получить важную информацию, необходимую для управления работой указанных объектов.
Манометрические термометры. Данное устройство включает в себя чувствительный элемент (термобаллон) и показывающий прибор, соединенных капиллярной трубкой и заполненных рабочим веществом. Принцип действия основан на изменении давления рабочего вещества в замкнутой системе термометра в зависимости от температуры.
В зависимости от агрегатного состояния рабочего вещества различают жидкостные (ртуть, ксилол, спирты), газовые (азот, гелий) и паровые (насыщенный пар низкокипящей жидкости) манометрические термометры.
Давление рабочего вещества фиксируется манометрическим элементом – трубчатой пружиной, раскручивающейся при повышении давления в замкнутой системе.
В зависимости от вида рабочего вещества термометра пределы измерения температуры составляют от – 50о до +1300оС. Приборы могут оснащаться сигнальными контактами, записывающим устройством.
Терморезисторы (термосопротивления). Принцип действия основан на свойстве металлов или полупроводников (термисторы) изменять свое электрическое сопротивление с изменением температуры. Эта зависимость для терморезисторов имеет вид:
, (7.2)
где R0 – сопротивление проводника при Т0=2930К;
αТ – температурный коэффициент сопротивления
Чувствительные металлические элементы изготавливают в виде проволочных катушек или спиралей в основном из двух металлов – меди (для низких температур – до 180оС) и платины (от -250о до 1300оС), помещенных в металлический защитный кожух.
Для регистрации контролируемой температуры терморезистор, как первичный датчик, подключается к автоматическому мосту переменного тока (вторичный прибор), данный вопрос будет рассмотрен ниже.
В динамическом отношении терморезисторы можно представить апериодическим звеном первого порядка с передаточной функцией W(p)=k/(Tp+1), если же постоянная времени датчика (Т) значительно меньше постоянной времени объекта регулирования (контроля), допустимо принимать данный элемент как пропорциональное звено.
Термопары. Для измерения температур в больших диапазонах и свыше 1000оС обычно применяют термоэлектрические термометры (термопары).
Принцип действия термопар основан на эффекте возникновения ЭДС постоянного тока на свободных (холодных) концах двух разнородных спаянных проводников (горячий спай) при условии, что температура холодных концов отличается от температуры спая. Величина ЭДС пропорциональна разности этих температур, а величина и диапазон измеряемых температур зависит от материала электродов. Электроды с нанизанными на них фарфоровыми бусами помещаются в защитную арматуру.
Подключение термопар к регистрирующему прибору производится специальными термоэлектродными проводами. В качестве регистрирующего прибора может использоваться милливольтметр с определенной градуировкой или автоматический мост постоянного тока (потенциометр).
При расчете систем регулирования термопары могут представляться, как и терморезисторы, апериодическим звеном первого порядка или пропорциональным.
Промышленность выпускает различные типы термопар (табл. 7.1).
Таблица 7.1 Характеристика термопар
Тип | Сочетание электродов (сплавы, металл) | Пределы измерения оС |
ТХК | Хромель-копель | - 50 - 600 |
ТХА | Хромель-алюмель | 0 – 1000 |
ТПП | Платинородий-платина | 0 - 1600 |
ТВМ | Вольфрам-молибден | 0 - 2000 |
Датчики давления. Датчики давления (разряжения) и перепада давления получили самое широкое применение в горно-обогатительной отрасли, как общепромышленные датчики, так и в качестве составных элементов более сложных систем контроля таких параметров, как плотность пульп, расход сред, уровень жидких сред, вязкость суспензии и п.п.
Приборы для измерения избыточного давления называются манометрами или напоромерами, для измерения вакуумметрического давления (ниже атмосферного, разряжение) – вакуумметрами или тягомерами, для одновременного измерения избыточного и вакуумметрического давления - мановакуумметрами или тягонапорометрами.
Наибольшее распространение получили датчики пружинного типа (деформационные) с упругими чувствительными элементами в виде манометрической пружины (рис. 7.7 а), гибкой мембраны (рис. 7.7 б) и гибкого сильфона.
.
Для передачи показаний на регистрирующий прибор в манометрах может быть встроен преобразователь перемещения. На рисунке показаны индукционно-трансформаторные преобразователи (2), плунжеры которых связаны с чувствительными элементами (1 и 2).
Приборы для измерения разности двух давлений (перепада) называются дифференциальными манометрами или дифманометрами (рис. 7.8). Здесь давление воздействует на чувствительный элемент с двух сторон, эти приборы имеют два входных штуцера для подачи большего (+Р) и меньшего (-Р) давления.
Дифманометры можно разделить на две основные группы: жидкостные и пружинные. По виду чувствительного элемента среди пружинных наиболее распространены мембранные (рис. 7.8а), сильфонные (рис.7.8 б), среди жидкостных - колокольные (рис. 7.8 в).
Мембранный блок (рис. 7.8 а) обычно заполняется дистиллированной водой.
Колокольные дифманометры, у которых чувствительным элементом является колокол, частично погруженный вверх дном в трансформаторное масло, являются наиболее чувствительными. Они применяются для измерения небольших перепадов давления в пределах 0 – 400 Па, например, для контроля разряжения в топках сушильных и котельных установок
Рассмотренные дифманометры относятся к бесшкальным, регистрация контролируемого параметра осуществляется вторичными приборами, на которые поступает электрический сигнал от соответствующих преобразователей перемещения.
Датчики механических усилий. К этим датчикам относятся датчики, содержащие упругий элемент и преобразователь перемещения, тензометрические, пьезоэлектрические и ряд других (рис. 7.9).
Принцип работы данных датчиков ясен из рисунка. Отметим, что датчик с упругим элементом может работать с вторичным прибором – компенсатором переменного тока, тензометрический датчик – с мостом переменного тока, пьезометрический – с мостом постоянного тока. Подробнее этот вопрос будет изложен в последующих разделах.
Тензометрический датчик представляет собой подложку на которую наклеено несколько витков тонкого провода (специальный сплав), либо металлической фольги как показано на рис. 7.9б. Датчик наклеивается на чувствительный элемент, воспринимающий нагрузку F, с ориентацией длинной оси датчика по линии действия контролируемой силы. Этим элементом может быть любая конструкция, находящаяся под воздействием силы F и работающая в пределах упругой деформации. Этой же деформации подвергается и тензодатчик, при этом проводник датчика удлиняется либо сокращается по длинной оси его установки. Последнее приводит к изменению его омического сопротивления по известной из электротехники формуле R=ρl/S.
Добавим здесь, что рассмотренные датчики могут быть использованы при контроле производительности ленточных конвейеров (рис.7.10 а), измерении массы транспортных средств (автомобилей, железнодорожных вагонов, рис. 7.10 б), массы материала в бункерах и пр.
Оценка производительности конвейера основана на взвешивании определенного участка нагруженной материалом ленты при постоянной скорости ее движения. Вертикальное перемещение весовой платформы (2), установленной на упругих связях, вызванное массой материала на ленте, передается на плунжер индукционно-трансформаторного преобразователя (ИТП), который формирует информацию на вторичный прибор (Uвых).
Для взвешивания железнодорожных вагонов, груженых автомобилей весовая платформа (4) опирается на тензометрические блоки (5), представляющие собой металлические опоры с наклеенными тензометрическими датчиками, которые испытывают упругую деформацию, зависящую от массы объекта взвешивания.
- Лекция № 1 Введение. Основные понятия. Терминология
- Лекция № 2 Классификация систем и принципы автоматического регулирования
- Лекция № 3 Методы описания свойств элементов автоматики. Типовые звенья аср, характеристики
- Лекция № 4 Объекты автоматического регулирования. Классификация и описание
- Лекция № 5 Автоматичекие регуляторы, переходные процессы, законы регулирования
- Лекция № 6 Качество регулирования. Выбор законов регулирования
- Лекция № 7 Расчет парметров регуляторов. Устойчивость аср
- 7 Системы автоматического контроля технологических параметров
- 7.1 Общая характеристика систем контроля. Датчики и преобразователи
- 7.2 Автоматический контроль уровней и расходов продуктов
- 7.3 Контроль свойств суспензий и состава жидких и твердых сред
- 8 Общепромышленные технические средства автоматизации
- 8.1 Вторичные измерительные приборы.
- 8.2 Промышленные управляющие устройства
- 8.3 Исполнительные механизмы и регулирующие органы
- 9 Принципы разработки схем автоматизации технологических процессов
- 10 Разработка схем автоматизации флото-фильтровального отделения
- 10.1 Схема автоматизации угольной флотации
- 10.2 Схема автоматизации процесса обезвоживания
- 11 Разработка схем автоматизации гравитационных процессов обогащения
- 11.1 Схема автоматизации отсадочной машины
- 11.2 Схема автоматизации процесса обогащения
- 12. Разработка схем автоматизации сушильных установок
- 12.1 Особенности сушильных установок как объектов управления
- 12.2 Схема автоматизации топки с цепной решеткой.
- 12.3 Схема автоматизации барабанной сушильной установки
- 12.4 Схема автоматизации трубы-сушилки
- 13 Разработка схемы автоматизации процесса сгущения
- 14 Особенности автоматизации процессов рудного обогащения
- Заключение