30.Плазменная обработка материалов: назначение, плазматроны прямого и косвенного действия, технологические процессы наплавки, напыления и резки.
В технологии приборостроения, радиоаппаратостроения и металлообработки плазма применяется в виде узконаправленной горячей струи, способной расплавить и испарить практически все материалы: как материалы так и не материалы.
По конструкции плазматроны разделяются на сепараторы прямого и косвенного действия.
Рис. 8.14. Устройство плазматрона: 1 – сопло; 2 – вольфрамовый электрод;
3 – ввод плазменного газа; 4 – изделие; 5 – канал для подачи присадочного порошка.
Для получения плазмы используются электролитический дуговой разряд, через который с помощью сопла продувается плазмообразующий газ (аргон, азот, воздух или их смесь). Питание плазматрона осуществляется от мощного электрического источника с напряжением 200–500 В и током 300–400 А. Необходима стабилизация дуги, чтобы горячая струя не замкнулась на сопло и не расплавила его, а также с целью некоторой фокусировки. Она осуществляется аксиальным потоком газа, либо суженными стенками охлаждаемого сопла.
Плазменная обработка используется в процессах, требующих высокотемпературного концентрированного нагрева: резка, прошивка отверстий, микро- и макросварка, нанесение покрытий, восстановление изношенных деталей, плавка.
Наплавка износостойких покрытий осуществляется с целью повышения эксплуатационных свойств детали.
Применяют порошкообразные материалы со специальными свойствами – высокой твердостью, повышенной износостойкостью, коррозионно- и термостойкостью (оксиды или карбиды бора, вольфрама). Детали получаются с дешевой сердцевиной из конструктивных материалов, а на ответственных участках создаются необходимые свойства. Значительно снижаются расходы дорогостоящих легирующих материалов. Толщина слоев может достигать нескольких мм. Технология: наносимый материал используется в виде пасты; происходит расплавление и сварка слоя наплавляемого материла с основным материалом. В этом случае применяются плазменные горелки косвенного действия.
Напыление. Напыляемый материл нагревается в плазматроне. Температура подложки в зависимости от цели напыления может быть различной. Формируются слои небольшой толщины – от нескольких мкм до одного мм. Для увеличения адгезии напыленного слоя стремятся повысить степень химического воздействия покрытия с подложкой за счет ее разогрева или введения промежуточных химически активных слоев.
Плазменная резка. Достоинства: обрабатываются любые металлы толщиной до 100–150 мм, меньшая ширина реза чем при газовой резке, лучшая поверхность, меньшая зона термических изменений. Скорость: 0,5–1,5 см/с в зависимости от толщины.
Для плазменной резки используются плазматроны прямого действия. Плазмообразующий газ – аргон, азот, водород или воздух. При микроплазменной резке ток 50–100 А, толщина резки до 8 мм, ширина реза до 1-го мм.
- 2.Основные характеристики технологического процесса: временные характеристики, абсолютные показатели.
- 3. Качество деталей рэс. Показатели качества. Качество поверхности деталей.
- 5 Классификация технологических процессов: классификационные признаки, характерные особенности в пределах используемых классификационных подходов.
- 6. Проектирование технологических процессов изготовления деталей рэс: исходные данные для проектирования, содержание работ по проектированию, состав и формы комплекта технологической документации.
- 7. Общая характеристика способов обработки металлов давлением: упругая и пластическая деформация металлов, холодная и горячая обработка металлов давлением, способы обработки металлов давлением.
- 8. Прокатка как способ обработки металлов давлением: схема процесса, технологическое оснащение, этапы технологического процесса, режимы обработки.
- 10.Ковка как способ обработки металлов давлением: применяемый инструмент, формообразующие технологические операции, основные характеристики процесса.
- 11. Накатывание резьб и мелкомодульных зубчатых колес: схемы проведения процессов, технологический инструмент и оснастка, размеры заготовок.
- 12.Холодное выдавливание как способ обработки металлов давлением: разновидности процесса, технологическое оборудование и оснастка, особенности процесса.
- 2.3.10.1. Резка
- 2.3.10.2. Гибка
- 2.3.10.3. Вытяжка
- 2.3.10.4. Формовка
- 2.3.10.2. Гибка
- 2.3.10.3. Вытяжка
- 2.3.10.4. Формовка
- 2.3.10.5. Листовая штамповка пластмасс
- 17. Способы обработки металлов резанием. Физические основы процесса обработки резанием.
- 18) Токарная обработка как способ изготовления деталей: разновидности процесса точения, типы токарных резцов и др. Инструмента, технологическое оборудование.
- 19 Фрезерование как способ изготовления деталей: разновидности процесса, инструмент, технологическое оборудование
- 20 Методы отделочной обработки поверхностей деталей со снятием стружки: отделка поверхностей чистовыми резцами и шлифовальными кругами; полирование заготовок, абразивно-жидкостная отделка.
- Отделка поверхностей чистовыми резцами и шлифовальными кругами
- 21. Отделочная обработка поверхностей деталей без снятия стружки: физические основы процессов, разновидности методов, примеры схем процессов обработки.
- 4.11. Калибровка отверстий Рис. 4.12. Вибронакатывание
- Прессование
- 24 Литье по выплавленным моделям
- 28. Электрохимические методы обработки металлов: общая характеристика, электрохимическое полирование, размерная и электроалмазная обработка.
- 8.4.2. Технологические возможности размерной узо
- 30.Плазменная обработка материалов: назначение, плазматроны прямого и косвенного действия, технологические процессы наплавки, напыления и резки.
- 31. Поверхностные покрытия и антикоррозийная защита деталей рэс: назначение и классификация покрытий, требования к покрытиям, обозначения покрытий, металлические и неметаллические покрытия.
- Гравирование
- Фотогравирование
- Нанесение надписей литографическим способом и декалькоманией
- Теснение или штамповка
- Сеткография
- Контроль качества надписей и рисунков