logo search
metrologia_2

55 Основные критерии исключения грубых погрешностей (Романовского, Ирвина, « 3 сигм », вариационного размаха).

При однократных измерениях обнаружить промах не представляется возможным. Для уменьшения вероятности появления промахов измерения проводят два-три раза и за результат принимают среднее арифметическое полученных отсчетов. При многократных измерениях для обнаружения промахов используют статистические критерии, предварительно определив, какому виду распределения соответствует результат измерений.

Вопрос о том, содержит ли результат наблюдений грубую погрешность, решается общими методами проверки статистических гипотез. Проверяемая гипотеза состоит в утверждении, что результат наблюдения х, не содержит грубой погрешности, т.е. является одним из значений измеряемой величины. Пользуясь определенными статистическими критериями, пытаются опровергнуть выдвинутую гипотезу. Если это удается, то результат наблюдений рассматривают как содержащий грубую погрешность и его исключают.

Для выявления грубых погрешностей задаются вероятностью q (уровнем значимости) того, что сомнительный результат действительно мог иметь место в данной совокупности результатов измерений.

Критерий "трех сигм" применяется для результатов измерений, распределенных по нормальному закону. По этому критерию считается, что результат, возникающий с вероятностью q < 0,003, маловероятен и его можно считать промахом, если |х̅-хi| > 3Sx , где Sx — оценка СКО измерений. Величины х и Sx вычисляют без учета экстремальных значений xi. Данный критерий надежен при числе измерений n 20... 50.

Это правило обычно считается слишком жестким, поэтому рекомендуется [4] назначать границу цензурирования в зависимости от объема выборки: при

6 < n < 100 она равна 4Sx; при 100 < n < 1000 - 4,5Sx; при 1000 < n < 10000 - 5Sx. Данное правило также применимо только для нормального закона.

В общем случае границы цензурирования trpSx выборки зависят не только от объема n, но и от вида распределения. Назначая ту или иную границу, необходимо оценить уровень значимости q, т.е. вероятность исключения какой-либо части отсчетов, принадлежащих обрабатываемой выборке. В [4] приводится выражение для приближенного расчета коэффициента trpпри уровне значимости q < l/(n + 1):

где e — эксцесс распределения. Данные выражения применимы для:

• кругловершинных двухмодальных распределений с e = 1,5,..., 3, являющихся композицией дискретного двузначного и нормального распределений;

• островершинных двухмодальных распределений с e = 1,5,..., 6, являющихся композицией дискретного двузначного распределения и распределения Лапласа;

• композиций равномерного и экспоненциальных распределений с показателем степени a = 1/2 при e = 1,8,...,6;

• экспоненциальных распределений с e = 1,5,...,6.

Критерий Романовского применяется, если число измерений n < 20. При этом вычисляется отношение |(х̅ - xi)/SX| = b и сравнивается с критерием bт, выбранным по табл. 7.1. Если b ³ bт, то результат хi считается промахом и отбрасывается. 

Пример 7.1. При диагностировании топливной системы автомобиля результаты пяти измерений расхода топлива составили: 22, 24, 26, 28, 30 л на 100 км. Последний результат вызывает сомнение. Проверить по критерию Романовского, не является ли он промахом.

Найдем среднее арифметическое значение расхода топлива и его СКО без учета последнего результата, т.е. для четырех измерений. Они соответственно равны 25 и 2,6 л на 100 км.

Поскольку n < 20, то по критерию Романовского при уровне значимости 0,01 и n = 4 табличный коэффициент bт  = 1,73. Вычисленное для последнего, пятого измерения b = |(25 – 30)|/2,6 = 1,92 > 1,73 .

Критерий Романовского свидетельствует о необходимости отбрасывания последнего результата измерения.

Значения критерия Романовского

 

q

n =4

n = 6

 n = 8

 n = 10

 n = 12

 n = 15

 n = 20

0,01

1,73

2,16

2,43

2,62

22,75

2,90

3,08

0,02

1,72

2,13

2,37

2,54

2,66

2,80

2,96

0,05

1,71

2,10

2,27

2,41

2,52

2,64

2,78

0,10

1,69

2,00

2,17

2,29

2,39

2,49

2,62

 

 

 

 

Метод Ирвина

Критерий вариационного размаха

Является одним из простых методов исключения грубой погрешности измерений (промаха). Для его использования определяют размах вариационного ряда упорядоченной совокупности наблюдений(x1 ≤ x2 ≤ ... ≤ xk ≤ ... ≤ xn ) : Rn = xn − x1 . (3.6)

Если какой-либо член вариационного ряда, например xk , резко отличается от всех других, то производят проверку, используя следующее

неравенство: X − z ⋅ Rn < xk < X + z ⋅ Rn (3.7) где X – выборочное среднее арифметическое значение, вычисленное

после исключения предполагаемого промаха; z – критериальное значение.

Нулевую гипотезу (об отсутствии грубой погрешности) принимаютесли указанное неравенство выполняется. Если xk не удовлетворяет условию

(3.7), то этот результат исключают из вариационного ряда. Коэффициент z зависит от числа членов вариационного ряда n, что представлено в таблице 3.3.

Таблица 3.3 – Критерий вариационного размаха

n 5 6 7 8-9 10-11 12-15 16-22 23-25 26-63 64-150

z 1,7 1,6 1,5 1,4 1,3 1,2 1,1 1,0 0,9 0,8