logo search
Электрооборудование / Электро форм

Бортовые электрические устройства запуска авиационных двигателей

В систему запуска авиационных двигателей входят агрегаты и устройства, обеспечивающие предварительную раскрутку ротора двигателя (электростартеры, турбостартеры, воздушные стартеры); агрегаты, обеспечивающие подачу топлива, воспламенение горючей смеси и работу двигателя в процессе запуска (топливные автоматы запуска, топливные насосы, фильтры, пусковые форсунки, воспламенители, пусковые катушки, свечи и т. п.); агрегаты и устройства, обеспечивающие необходимую последовательность автоматичности работы системы запуска (пусковые панели, коробки, комплексные автоматы запуска и т. п.).

Пусковые коробки (панели) предназначены для управления запуском двигателя. Управление производится по заранее заданной программе: в зависимости от времени, скорости вращения ротора двигателя или используются оба способа управления запуском.

Для управления запуском двигателя по времени применяют пусковые панели типа ПС, АВП, АВ, АПД, КАЗ, которые состоят из автомата времени пуска и групп реле, размещенных в одной коробке.

К электрическим агрегатам предварительной раскрутки двигателей относятся стартеры прямого, косвенного действия и стартеры-генераторы.

Стартеры прямого действия (например, СТ-2, СТ-2-48, СТ-2-48В, СТ-3ПТ и др.) представляют собой четырехполюсные электродвигатели смешанного возбуждения мощностью от 3 до 7 кВт. Для обеспечения раскрутки и расцепления статора с ротором двигателя имеется, специальная муфта.

Стартер-генераторы при запуске выполняют функции стартера, при работе двигателя — функции генератора. Соединение вала стартер-генератора с валом двигателя осуществляется с помощью шлицевого валика, редуктора и специальной муфты.

Стартеры косвенного действия обеспечивают запуск турбо-стартера, который в свою очередь обеспечивает раскрутку ротора авиадвигателя, Наибольшее распространение получили электростартеры типа СА (например, СА-189Б), представляющие собой двухполюсные электродвигатели постоянного тока, последовательного возбуждения, мощностью 1000—1500 Вт.

Центробежные, пневмоэлектрические и гидроэлектрические выключатели, применяемые для отключения стартеров.

Центробежные выключатели замеряют скорость вращения ротора двигателя и при определенной скорости освобождают кнопку микровыключателя.

Пневмоэлектрические выключатели обеспечивают размыкание электроцепи стартера при определенном давлении за компрессором.

Гидроэлектрические выключатели отключают стартер при возрастании давления масла, в маслосистеме двигателя до определенной величины, которая зависит от скорости вращения.

Электромагнитные топливные краны предназначены для управления подачей топлива в авиадвигатель (турбостартер). Они применяются в системах пускового, рабочего и форсажного топлива и представляют собой соленоид с сердечником и клапаном.

Пусковой топливный распределитель ПТР осуществляет автоматическое дозирование подачи топлива в авиадвигатель при его запуске. ПТР состоит из трех электромагнитных золотниковых клапанов разного сечения. В зависимости от частоты вращения двигателя обмотки электромагнитов обесточиваются в определенной последовательности, клапаны открываются, при этом обеспечивается ступенчатое регулирование подачи топлива.

Комплексные автоматы запуска КА-3-12В, КПР-15А, ПР-12В, ПУ-3Б, ПУ-3БФ, ПУ-44, ПУ-4Б, ПУ-9Б предназначены для обработки программы запуска газотурбинных двигателей во времени. Работают в комплекте с группами реле.

Электрические системы управления входными устройствами силовых установок

Общие сведения. Электрические системы управления устройствами воздухозаборников предназначены для регулирования входного сечения диффузора в зависимости от режимов полета и работы авиадвигателей.

Применяющиеся, на самолетах системы автоматического управления входными устройствами являются электрогидравлическими. Силовые элементы их являются гидравлическими, а остальная часть схемы — электрическая и электромеханическая.

Изменение положений конуса и створок перепуска воздуха может быть ступенчатым или плавным.

В разомкнутых системах со ступенчатым изменением положения конуса в качестве входной величины используются сигналы по числу М полета, выдаваемые контактами М-реле. Системы плавного управления положением конуса или створок входного устройства выполняются обычно в виде следящих систем. В качестве входной величины для управления приняты величины Qтпр — приведенного расхода воздуха, величина nпр — приведенная частота вращения вала авиадвигателя или величина степени сжатия компрессора.

Отказ или неправильная работа системы управления входным устройством может привести к помпажу входного устройства или турбокомпрессора и самовыключению авиадвигателя. Поэтому в полете пилот должен периодически наблюдать за показаниями указателей положения конуса и створок воздухозаборника, а также за лампами сигнализации.

Перед взлетом самолета переключатели управления конусом и створками устанавливаются в положение «Автомат». При этом стрелки указателей положения конуса и створок должны находиться на нулевых отметках шкал.

В полете, когда число М достигает значения, соответствующего началу выпуска конуса, должна загореться лампочка сигнализации «Конус выпущен», а стрелка указателя положения конуса должна сместиться вправо от нулевой отметки шкалы. С увеличением скорости полета или с уменьшением частоты вращения турбокомпрессора стрелки указателей положения конуса или створок должны переместиться по часовой стрелке. При посадке стрелки указателей устанавливаются на нулевой отметке шкалы, а лампы сигнализации гаснут.

Система автоматического управления всережимным воздухозаборником по величине степени сжатия (СРВМУ-2АМ, УВД-2М, УВД-58М, ЭСУВ-1В и др.) состоит из устройства формирования сигнала о величине степени сжатия компрессора (датчики ДСС, ДССБ, 2ДССА, 2ДССБ и др.) и следящей системы, обеспечивающей соответствие положений входных устройств величинам степени сжатия.

Рис.1 Программа управления входным устройством по степени сжатия компрессора

 

Система автоматического управления воздухозаборником по величине приведенной частоты вращения вала (АРВ-26А, АРВ-29Д, АРВ-29И, АРВ-40, СУЗ-9, СУЗ-10, СУЗ-11). Датчиком приведенной частоты вращения вала авиадвигателя ДП4 служит электрическое счетно-решающее устройство, вычисляющее частоту вращения по формуле

где n—частота вращения вала двигателя; Т* = Т (1 +0,2M2)—температура заторможенного потока воздуха перед компрессором; Т —температура наружного воздуха.

Рис.2 Программа управления входным устройством по приведенной частоте вращения двигателя

Особенностью схемы является то, что одна и та же следящая система используется для плавного автоматического управления положения конуса, так и положением створок перепуска воздухозаборника.

Электрическое зажигание в авиационных двигателях

Электрическое зажигание предназначено для воспламенения топливно-воздушной смеси в камерах сгорания двигателя.

Системы зажигания по своему назначению подразделяются на пусковые (работают в процессе запуска) и рабочие (работают на протяжении всего периода работы двигателя).

По принципу действия электрические системы зажигания подразделяют на индуктивные, емкостные, комбинированные и калильного зажигания. В индуктивных и емкостных системах энергия от источника питания используется для создания на свечах зажигания индуктивного или емкостного разряда. В системах калильного зажигания энергия источника питания передается нагревательному элементу калильной свечи зажигания.

Основными элементами пусковых систем зажигания, применяемых как на поршневых, так и на газотурбинных двигателях, являются агрегаты зажигания (СК, СКН, СКНБ, СКНР, ТКНА, ТКНС, ТКНТ, КН, КНИС, КМД и др.), пусковые (индукционные) катушки или вибраторы (КР-12СИ, КПМ-1А, КПН-4, КП-21, КП-21Б, КП-21М1 и др.), высоковольтные экранированные провода, запальные свечи (СД, СП, СПН, СПП, СЭ) и аппаратура управления с соединительными проводами.

Основными элементами рабочих систем зажигания, применяемых на поршневых двигателях, являются магнето (М-9, М-9-35, МВЛ-7, МБ14Т-2, МБ14Т-2М и др.), провода высокого напряжения, экранирующие устройства и переключатели магнето.

В последнее время наряду с высоковольтными системами зажигания (до 20000 В) все большее применение находят низковольтные системы зажигания (до 500 В) как более надежные, особенно в высотных условиях.

Электрические системы управления режимами работы авиационных двигателей

Под режимами работы авиадвигателя подразумевают определённую совокупность параметров процесса, протекающего в авиадвигателе.

Управление режимом осуществляется с помощью управляющих воздействий путём изменения подачи топлива в основную и форсажные камеры сгорания, критического сечения выходного сопла, геометрий проточной части входного устройства и компрессора. Программы управления учитывают особенности конкретного авиадвигателя. Основными регулируемыми параметрами являются: угловая скорость ротора (частота вращения ротора); параметры автоматических ограничителей; температура газов перед турбиной Т*Г и за турбиной Т*4; степень повышения давления воздуха в компрессоре к, давление воздуха p*к на выходе из компрессора.

Электрические устройства ограничения температуры газов за турбиной. Система регулирования реализует программу, определяемую положением рычага управления двигателем (РУД) РУД и статическим давлением окружающей среды. Ограничение температуры ТГ осуществляется изменением расхода топлива пи перемещении перепускной иглы автомата дозирования топлива (АДТ). Регулятор перестраивается с задержками по времени для исключения перерегулирований в системе, возможных в следствие большой постоянной времени датчика температуры. Система имеет высотную коррекцию - сигналом от датчика давления измеряется настройка регулятора температуры.

Рис.1 Схема регулятора температуры (а) и вид сигналов управления (б): ЗТ-задатчик температуры; ВК-высотный корректор; УМ-усилитель; ФЧУ-фазочувствительный усилитель; КК-корректирующий контур; ШИМ-широко-импульсный модулятор; ЭК-электронный ключ; ИМ-исполнительный механизм; АДТ-автомат дозирования топлива; ДТ-датчик температуры

Основными элементами электрических устройств ограничения температуры являются регуляторы РТ3, РТ-12, РТА.

Электронные системы управления авиадвигателями (ЭСУД) выполняют следующие функции: ограничивают частоту вращения ротора каскада низкого давления по заданной программе; ограничивают среднюю температуру выходящих газов за турбиной Т*4, определяемую заданными настройками запуска Тзап, взлёта Твзл и полёта Тном; защищают авиадвигатель от перегрева при запуске и реверсировании тяги. Управление авиадвигателя осуществляется совместно гидромеханическим регулятором частоты вращения ротора высокого давления и автоматом тяги.

Электронные системы управления авиадвигателями (ЭСУД) выполняют следующие функции: ограничивают частоту вращения ротора каскада низкого давления по заданной программе, ограничивают среднюю температуру выходящих газов за турбиной Т*4, определяемую заданными настройками запуска Тзап, взлета Твзл и полета Тном; защищают авиадвигатель от перегрева при запуске и реверсировании тяги. Управление авиадвигателя осуществляется совместно гидромеханическим регулятором частоты вращения ротора высокого давления и автоматом тяги.

Электронные системы типов РРД-15БМ, ЭСУ-18, ЭСУД-25, ЭСУД-32, ЭСУД-86, РЭД имеют аналогичные структуры.

Рис2. Схема системы ЭСУД-86

Каждый авиадвигатель управляется своей ЭСУД, состоящей из блока ЭЛ-664, датчиков скорости ДС-41 и рамы. В работе ЭСУД взаимодействует с датчиками П-98 температуры воз6духа Т*в на входе в авиадвигатель, датчиками ИКД-27 абсолютного давления, термопарами Т-93, измеряющими температуру Т*4 газов за турбиной, электрогидравлическими клапанами МКВ-158(М) и МКВ-159(Б), управляющим расходом топлива в авиадвигатель, а также электромагнитным клапаном останова и клапаном ограничения подачи топлива (гидроупор) при взлете МКВ-165, установленным в АДТ Электрический сигнал перехода на гидроупор поступает от концевых выключателей выпущенного положения закрылков, при этом режим работы авиадвигателя не может стать меньше номинального.

Электронный блок ЭП-664 структурно делится на канал регулирования частоты вращения ЭРО и канал регулирования средней температуры РСТ газов. Логика включения клапанов определяется режимом их совместной работы с АДТ и обеспечивает защиту двигателя от значительных отклонений от заданных режимов работы при обрыве цепей управления клапанами.

Управляющий сигнал на клапаны

Состояние клапана

Изменение режима работы АДТ

М

Б

М

Б

0 (нет)

0 (нет)

0 (закрыт)

1 (открыт)

Увеличивается

0 (нет)

1 (есть)

0 (закрыт)

0 (закрыт)

Не меняется

1 (есть)

1 (есть)

1 (открыт)

0 (закрыт)

Уменьшается

Таб.1 Логика работы электрогидравлических клапанов

Системы запуска газотурбинных двигателей

Запуском авиадвигателя (АД) называется процесс вывода его на минимальный режим устойчивой работы, т.е. на режим малого газа (МГ).

Чтобы запустить двигатель необходимо выполнить условие:

Принудительно раскрутить ротор АД (за счет энергии внешних источников) и создать такую частоту вращения, при которой обеспечивалось бы необходимое количество воздуха в камере сгорания и давление воздухо-воздушной смеси

Необходимо подвести пусковое топливо

Воспламенить пусковое топливо

В очаг пламени подать топливо и обеспечить устойчивую работу авиадвигателя

Перечисленные условия выполняются специальными пусковыми устройствами: стартерами, пусковыми топливными системами, системы зажигания и аппаратуры управления.

Запуск АД является важным моментом, т.к. он существенно влияет на боеготовность самолета. Исходя из этого, к системам запуска предъявляется ряд требований:

Обеспечение надёжности запуска

Минимальное время запуска

Автоматизация всех операций при запуске

Обеспечение автономного запуска

Основные этапы запуска

В процессе запуска ГТД стартер преодолевает два момента - Мс и Мдин.

где j - момент инерционных сил, а n - частота вращения. В процессе запуска Мтрения=const. Основное сопротивление стартеру в момент раскрутки представляет момент компрессора Мк, который увеличивает степень сжатия воздуха:

Процесс запуска АД может быть представлен в виде трех этапов, следующих один за другим.

На первом этапе, который осуществляется от начала раскрутки ротора до пусковой частоты вращения n1. В раскрутке ротора участвует только стартер. При n1 в камере сгорания создается расход воздуха и давление, которое является благоприятным для воспламенения топливо-воздушной смеси. В конце первого этапа включается система зажигания и пусковая топливная система. Происходит воспламенение т-в смеси, в очаг пламени впрыскивается рабочее топливо и начинает работать турбина.

На втором этапе ротор АД раскручивается под действием момента стартера и момента турбины. При частоте вращения n2 момент турбины равен:

Частота вращения n2 является такой, при которой АД работает в неустойчивом режиме. Поэтому необходимо производить дальнейшую раскрутку ротора АД до частоты сопровождения n3.

При n3 турбина имеет избыточный момент, достаточный для раскрутки ротора АД и стартер можно отключать.

От n3 до n4 турбина раскручивает ротор АД и при частоте вращения n4 двигатель выходит на режим устойчивой работы, т.е. на режим малого газа.

В некоторых двигателях все три этапа запуска не являются обязательными. Может отсутствовать третий режим.

Мощность стартера выбирается таким образом, что Мстарт.>Мстатич.

Для ускорения процесса запуска АД мощность стартера имеет следующую зависимость: для повышения скорости запуска в два раза, мощность стартера надо увеличить в четыре раза.

Особенности запуска на земле и в воздухе

Особенностью запуска в воздухе является то, что за счет набегающего потока воздуха авиадвигатель авторотирует, т.е. самовращается. Поэтому для запуска АД в воздухе достаточно подать и поджечь топливо. Для надёжного запуска на больших высотах необходимо так же осуществлять подпитку кислородом. Иногда применяют встречный запуск, т.е. на работающем АД включается пусковая топливная система, система зажигания и кислородной подпитки в момент, предшествующий возможному срыву потока в пламени камере сгорания.

При запуске АД на земле различают:

автономный запуск (от бортовых источников питания)

запуск от аэродромного источника

ложный запуск

консервация (Используется когда необходимо длительное хранение самолета. При этом в место керосина подается масло. Осуществляется раскрутка АД, происходит смазка двигателя, система зажигания не включается. При расконсервации - обратные процессы)

холодная прокрутка АД (ХПАД - топливо не подается и зажигание не включается. Используется для проверки пусковых агрегатов АД, а так же в случае неудавшегося запуска)

Для облегчения запуска на земле желательно снижение Мкомпрессора. Для этого часть воздуха, проходящего через компрессор, сливается в атмосферу через клапаны перепуска воздуха, которые находятся за 2-3 ступенью компрессора.

При запуске АД на земле для исключения перегрева двигателя и облегчения запуска на самолётах с регулируемым выходным соплом, створки сопла открываются на максимальную величину.

Основные способы запуска ГТД

Основными способами запуска газотурбинного двигателя являются:

1) Электростартерный запуск, когда применяются стартеры прямого действия - ГС, ГСР-СТ, СТГ.

2) Турбостартерный запуск с помощью электростартера. Достигается высокая мощность при малом расходе энергии.

3) Пневматический запуск. В этом случае сжатый воздух подается либо от аэродромного источника, либо от бортового туброкомпрессора.

Методы управления электростартерами в процессе запуска ГТД

Разгон электростартера типа ГСР-СТ осуществляется ступенчато:

На первом этапе запуска в цепь якоря электростартера включается пусковое сопротивление Rп, при ток якоря и момент небольшой. В начальный момент запуска частота вращения мала, и благоприятна для выборки люфтов в схеме запуска, осуществляется безударная сцепка выходного вала стартера с валом стартера.

По мере роста частоты вращения ток в якорной цепи уменьшается:

На втором этапе пусковое сопротивление Rп шунтируется. Ток якоря резко возрастает, увеличивается частота вращения. С ростом оборотов ток якоря падает.

На третьем этапе аккумуляторные батареи с параллельного включения переключаются на последовательное, при этом напряжение возрастает с 24 В до 48 В (схема запуска 24/48). С увеличением Iя возрастают обороты, что приводит к снижению тока якоря.

На четвертом этапе в цепь параллельной обмотки возбуждения стартера включается Rдоп При этом увеличивется ток якоря, возрастают обороты вращения, это приводит к уменьшению тока якоря.

В стартерах типа СТГ, которые имеют только параллельную обмотку возбуждения, разгон в процессе запуска осуществляется плавно. При этом снижаются потери энегрии и повышается КПД при запуске АД. Плавные изменения магнитного потока в процессе запуска осуществляется с помощью угольного регулятора тока типа типа РУТ.

В отличие от угольного регулятора напряжения (УРН), в РУТ электромагнитные усилия не растягивают, а сжимают угольный столб.

Система запуска ГТД со стартер-генераторами ГСР-СТ

Данная система запуска является комбинированной, а по методу с управления со ступечатым изменением параметров.

Рис.1 Структурная схема

Принцип действия: от аппаратуры управления сигнал поступает на стартер-генератор (С-Г). Стартер-генератор через редуктор раскручивает ротор АД.

Управление системами запуска АД, такими как агрегаты пускового топлива, системы зажигания, электромагнитами клапанами перепуска воздуха, осуществляется в функции времени от аппаратуры управления.

Конечная операция по запуску двигателя осуществляется в функции частоты вращения и реализуется от центробежного датчика, сигнал с которого поступает в аппаратуру управления. После запуска АД С-Г переключается в генераторный режим работы.

В данных системах часто используются С-Г типа ГСР-СТ-12000. В качестве системы управления - автомат времени типа АВ7-44 и коробку пусковых реле КПР-15А.

Данная автоматизированная система обеспечивает:

автономный запуск на земле

запуск от аэродромного источника электроэнергии

запуск в воздухе

холодную прокрутку авиадвигателя

Система запуска ГТД с турбостартером

Данная система запуска осуществляется в функции частоты вращения.

Рис.1 Структурная схема: ЭСТ - электростартер, МСХ - муфта сухого скольжения, ТСТ - турбостартер, ТГ - тахогенератор, АД - авиадвигатель. Две стрелки - обозначают механическую связь, одна - электрическую.

Тахогенератор выдает напряжение тожественно равное частоте вращения ротора АД. В данной схеме аппаратурой управления является коробка типа ПТ-4В. Электростартер типа СТ-189, тахогенератор - ТД-1.

Данная схема обеспечивает:

автоматический запуск АД на земле и в воздухе

холодную прокрутку турбостартера

холодную прокрутку авиадвигателя

Система управления режимами АД в функции частоты вращения и положения РУД.

Рис.1 Программа регулирования

При запуске и разгоне АД створки должны быть максимально раскрыты. При переходе на номинальный режим шторки прикрываются скачком.

Включение максимального и форсажного режима осуществляется по положению РУД. Включение форсажа возможно только через маскимал Dc max - при запуске и полном форсаже.

При обратном процессе переход на режим малого газа при nв=60%.

На участке от минимимума до полного форсажа плавное регулирование тяги осуществляется потенциометрической следящей системой, в которой движок потенциометра датчика связан с РУД, а движок потенциометра обратной связи - со шторками.