logo
2 блок

2.3 Особенности кислого и основного процессов выплавки стали.

В кислых печах сталь обычно выплавляют методом переплава, применяя или не применяя кипения. Технология без кипения находит ограниченное применение при переплаве хромистых, хромоникелевых, хромокремнистых и хромомолибденовых сталей, так как отсутствие кипения позволяет полнее использовать хром из отходов. В основном же плавка в кислой печи проводится с кипением ванны, поскольку оно, как и в основном процессе, способствует рафинированию металла от газов. Шихтовые материалы. Ввиду того, что в процессе умелой плавки фосфор и сера не удаляются, а их содержание в стали за счет вводимых добавок даже несколько увеличивается, шихтовые материалы должны содержать фосфора и серы минимум на 0,01% ниже, чем допускается в готовой стали. Сообразно с этим собственные отходы не должны превышать 50% от массы завалки, а остальную впасть должны составлять скрап и отходы основной мартеновской или электропечной углеродистой стали.

Меньшая активность закиси железа в кислых шлаках и более высокая вязкость шлаков затрудняют окисление углерода. Но так как кислые шлаки менее проницаемы и для газов (азота и водорода), то интенсивность окисления углерода в кислой печи не имеет такого весомого значения, как в основной. Плавка стали в кислых печах даже при скорости выгорания углерода 0,3% С/ч позволяет получать качественную сталь. Кислые плавки шихтуют на выгорание меньшего количества углерода. Шихтовые материалы должны внести такое его количество, чтобы в период кипения окислилось 0,1—0,2% С. В случае необходимости недостающее количество углерода в завалку вносят в виде кокса, электродного боя или малофосфористого и малосернистого чугуна. Металлический лом не должен быть ржавым, так как окислы железа растворяя SiО2, способствуют разрушению кислой футеровки. При использовании сильно окисленного лома вредное действие окиси железа можно нейтрализовать, добавив в шихту необходимое их ошлакования количество кварцевого песка. В остальном требования к шихтовым материалам и порядку завалки их в печь аналогичны требованиям, предъявляемым к исходным материалам при основной плавке стали в дуговых печах.

Период плавления. Процесс плавления проводят так же, как и в основных печах. Поскольку же шихта кислых печей, как правило, более легковесна и более склонна к образованию мостов, необходимо сталкивать чаще, чем в основных печах. По этой же причине восстановление кремния происходит главным образом вследствие восстановления кремнезема футеровки и шлака углеродом. При этом возможны и другие реакции: (SiО2) + 2 [С] = [Si] + 2СО(Г), (SiО2) + 2 [Fe] = [Si] + 2 (FeO), (SiО2) + 2 [Mn] = [Si] + 2 (MnO).

Взаимодействие углерода с кремнеземом вследствие образования газообразного продукта реакции представляет собой необратимый процесс, вторая и третья реакции могут протекать как в прямом, так и в обратном направлении. Развитие прямой или обратной реакции определяется температурой ванны, химическим составом металла и шлака, консистенцией шлака.

Эти реакции эндотермичны, и поэтому повышение температуры стали способствует восстановлению кремния. Первая реакция протекает при достаточно высокой температуре и при недостатке в зоне реакции закиси железа. В хорошо прогретом металле по этой реакции углерод восстанавливает кремнезем футеровки, а образующийся кремний окисляется на границе раздела металл — шлак закисью железа или закисью марганца.

Если же концентрация окислов железа и марганца в шлаке невелика или вследствие большой вязкости шлака затруднена их диффузия к границе раздела металл — шлак, в металле может происходить накопление восстановленного кремния.

Таким образом, регулируя температуру ванны, содержание закиси железа в шлаке и его консистенцию в окислительный период кислой плавки можно регулировать не только интенсивность выгорания углерода и окисление или восстановление марганца, но также и ход реакций окисления и восстановления кремния.

Следует иметь в виду, что при интенсификации окислительных процессов присадками железной руды или вдуванием газообразного кислорода нежелательно получать сильножелезистые шлаки, так как они способны растворять кислую футеровку. Во избежание этого руду надо давать мелкими порциями и только после израсходования предыдущей порции, а продувку кислородом вести менее интенсивно, чем в основных дуговых печах. Для этой же цели в окислительный период целесообразно присаживать небольшие порции песка, поддерживая тем самым состояние насыщения шлака кремнеземом. К концу окислительного периода, определяемому по содержанию углерода, шлак содержит 55—60% SiО2, причем почти половина шлака бывает образована из материала футеровки.

Восстановительный период. Из-за отсутствия условий для удаления серы и в связи с ограниченными возможностями легирования восстановительный период в кислой печи либо вообще отсутствует, либо проводится по упрощенной технологии.

Но только в 1950-е годы конвертеры для выплавки стали окончательно выдвинулись на первый план. Степень использования тепла в кислородном конвертере гораздо выше, чем в сталеплавильных агрегатах подового типа. Тепловой коэффициент полезного действия конвертера составляет 70 процентов, а у мартеновских печей не более 30. Кроме того, газы отходящие из конвертера, используются при дожигании в котлах-утилизаторах, или как топливо при отводе газов из конвертера без дожигания.

Существует три вида конвертеров: с донной продувкой, верхней и комбинированной. В настоящее время наиболее распространенными в мире являются конвертеры с верхней продувкой кислородом - агрегаты весьма производительные и относительно простые в эксплуатации. Однако в последние годы во всем мире конвертеры с донным и с комбинированным (сверху и снизу) дутьем начинают теснить конвертеры с верхней продувкой.

Рассмотрим устройство кислородного конвертера с верхней продувкой. Средняя часть корпуса конвертера цилиндрической формы, стены ванны сферической формы, днище плоское. Верхняя шлемная часть конической формы. Кожух конвертера выполняют из стальных листов толщиной 30 - 90 миллиметров. В конвертерах садкой до 150 тонн днище отъемное, крепят его к корпусу болтами, что облегчает ремонтные работы. При садке 250-350 тонн конвертер делают глуходонным, что вызвано необходимостью создания жесткой конструкции корпуса, гарантирующей от случаев прорыва жидкого металла.

Корпус конвертера крепят к специальному опорному кольцу, к которому приваривают цапфы. Одна из цапф через зубчатую муфту соединена с механизмом поворота. В конвертерах вместимостью больше двухсот пятидесяти тонн обе цапфы являются приводными. Конвертер цапфами опирается на подшипники, установленные на станинах. Механизм поворота позволяет вращать конвертер вокруг горизонтальной оси.

Корпус и днище конвертера футеруют огнеупорным кирпичом. Подача кислорода в ванну конвертера для продувки металла осуществляется через специальную фурму, вводимую в горловину конвертера.

Первой операцией конвертерного процесса является загрузка скрапа. Конвертер наклоняют на некоторый угол от вертикальной оси и специальным коробом-совком вместимостью через горловину загружают в конвертер скрап - железный и стальной лом. Обычно загружают 20-25 процентов скрапа на плавку, если скрап не подогревают в конвертере, то затем сразу же заливают жидкий чугун. После этого конвертер устанавливают в вертикальное положение, через горловину в конвертер вводят кислородную фурму.

Для наводки шлака в конвертер по специальному желобу вводят шлакообразующие материалы: известь и в небольшом количестве железную руду и плавиковый шпат.

После окисления примесей чугуна и нагрева металла до заданных величин продувку прекращают, фурму из конвертера удаляют и сливают металл и шлак в ковши. Легирующие добавки и раскислители вводят в ковш.

Продолжительность плавки в хорошо работающих конвертерах почти не зависит от их вместимости и составляет 45 минут, продолжительность продувки - 15-25 минут. Каждый конвертер в месяц дает 800-1000 плавок. Стойкость конвертера - 600-800 плавок.

Движение металла в конвертере весьма сложное, помимо кислородной струи, на жидкую ванну воздействуют пузыри оксида углерода. Процесс перемешивания усложняется еще и тем, что шлак проталкивается струей газа в толщу металла и перемешивается с ним. Движение ванны и вспучивание ее выделяющимся оксидом углерода приводят значительную часть жидкого расплава в состояние эмульсии, в которой капли металла и шлака тесно перемешаны друг с другом. В результате этого создается большая поверхность соприкосновения металла со шлаком, что обеспечивает высокие скорости окисления углерода.

Конвертеры с донной продувкой кислородом из-за меньшего угара железа позволяют получить больший (на 1,5-2 процента) выход годной стали по сравнению с конвертерами с верхней продувкой. Плавка в 180-тонном конвертере с донной продувкой длится 32-39 минут, продувка - 12 - 14 минут, то есть производительность выше, чем у конвертеров с верхней продувкой. Однако необходимость промежуточной замены днищ нивелирует это различие в производительности.

Первые конвертеры с донной продувкой за рубежом были построены в

1966-1967 годах. Необходимость создания такого конвертера обусловлена, в основном, двумя причинами. Во-первых, необходимостью переработки чугунов с повышенным содержанием марганца, кремния и фосфора. Поскольку передел такого чугуна в конвертерах с верхней продувкой сопровождается выбросами металла в ходе продувки и не обеспечивает должной стабильности химического состава готовой стали. Во-кгорых, тем, что конвертер с такой продувкой является наиболее приемлемой конструкцией, позволяющей осуществить реконструкцию существующих бессемеровских и томасовских цехов, и вписывается в здание существующих мартеновских цехов. Этому конвертеру свойственно наличие большого числа реакционных зон, интенсивное окисление углерода с первых минут плавки, низкое содержание оксидов железа в шлаке В силу специфики работы сталеплавильной ванны при донной продувке в конвертерах подобного типа выход годного несколько выше, чем в других конвертерах, а запыленность отходящих газов ниже.

В конвертерах с донной продувкой, имеющих большое число фурм, все технологические процессы протекают интенсивнее, чем в конвертерах с верхней продувкой. Однако общая производительность конвертеров с донной продувкой не превышает значительно таковую для конвертеров с верхней продувкой по причине ограниченной стойкости днищ.

Чтобы предохранить кладку днища конвертера от действия высоких температур, фурму делают в виде двух коаксиальных трубок - по центральной подается кислород, а по периферийной - какое-либо углеводородное топливо, чаще всего природный газ. Таких фурм обычно 16-22. Большое число более мелких фурм обеспечивает лучшее перемешивание ванны и более спокойный ход плавки.

Струя топлива отделяет реакционную зону от днища, снижает температуру около днища в месте выхода кислородных струй за счет отбора тепла на нагрев топлива, крекинг и диссоциации составляющих топлива и продуктов их окисления. Охлаждающий эффект, кроме того, обеспечивается пылевидной известью, которая подается в струю кислорода. Таким образом, продувка расплавленного металла несколькими струями кислорода снизу создает ряд благоприятных особенностей в работе конвертера. Обеспечивается большее число реакционных зон и большая межфазная поверхность контакта кислородных струй с металлом. Это позволяет увеличить интенсивность продувки, повысить скорость окисления углерода. Улучшается перемешивание ванны, повышается степень использования кислорода. В результате появляется возможность расплавления больших по массе кусков скрапа. Лучшая гидродинамика ванны обеспечивает более ровный и спокойный ход всей плавки, практически исключает выбросы. В силу этого в конвертерах с донной продувкой можно перерабатывать чугуны с повышенным содержанием марганца и фосфора.

Стремление повысить производительность агрегатов одновременно с необходимостью повысить однородность состава и температуры металла при возможности изготовления сталей широкого диапазона привело к использованию комбинированной продувки при относительно небольшом (по сравнению только с донной продувкой) количестве газов, вдуваемых через фурмы, установленные в днище конвертера. В последнее время появилось два основных варианта такого процесса, когда снизу подают кислород или инертные газы с целью обеспечить интенсивное перемешивание ванны и ускорить процесс удаления примесей. При этом, как и при донной продувке, снизу вместе с газами может подаваться пылевидная известь. По такому важному показателю, как возможный расход скрапа, конвертеры с верхней, донной и комбинированной продувкой оказываются приблизительно на одном уровне при несколько более высоком выходе годного при донной продувке.

В настоящее время в мире применяется и разрабатывается много различных методов комбинированной продувки расплавленной ванны, рационально сочетающих верхнюю и донную продувку, причем в последней используется как кислород, так и инертные газы (аргон, азот).

В кислородно-конвертерном процессе с верхней продувкой достаточно интенсивное перемешивание достигается только в середине плавки при интенсивном окислении углерода. В начале и в конце плавки перемешивание недостаточно, что затрудняет глубокое рафинирование металла от серы и фосфора. Комбинированная подача кислорода через верхнюю и донные фурмы еще более, чем при одной донной продувке, ускоряет процесс окисления углерода и повышает производительность конвертера.

По сравнению с чисто донной продувкой в случае комбинированного процесса в сопоставимых условиях температура металла выше. Кроме того, при комбинированной продувке уменьшение расхода кислорода через верхнюю фурму снижает пылеобразование и разбрызгивание.

И еще одно преимущество кислородных конвертеров: здесь все процессы механизированы и автоматизированы; все чаще управление конвертерами поручается компьютерам.

компьютерам.