logo
яблочников

Роль 3d моделей на различных этапах жизненного цикла изделий.

Рис. 1 - Роль компьютерной модели изделия

Мышление конструктора, применяющего 3D-моделирование, отличается от мышления конструктора, работающего только с чертежами. Эти отличия состоят в следующем:

Различают поверхностное (каркасно-поверхностное), твердотельное и гибридное моделирование.

Поверхностное моделирование

При поверхностном моделировании сначала строится каркас – пространственная конструкция, состоящая из отрезков прямых, дуг окружностей и сплайнов. Каркас играет вспомогательную роль и служит основой для последующего построения поверхностей, которые «натягиваются» на элементы каркаса.

В зависимости от способа построения, различают следующие виды поверхностей: линейчатые, вращения, кинематические, галтельного сопряжения, проходящие через продольные и поперечные сечения, поверхности для «затягивания окон» между тремя и более смежными поверхностями, NURBS-поверхности, планарные поверхности.

Хотя поверхности и определяют границы тела, но самого понятия «тело» в режиме поверхностного моделирования не существует, даже если поверхности ограничивают замкнутый объем. Это наиболее важное отличие поверхностного моделирования от твердотельного.

Другая особенность состоит в том, что элементы каркасно-поверхностной модели никак не связаны друг с другом. Изменение одного из элементов не влечет за собой автоматического изменения других. Это дает большую свободу при моделировании, но одновременно значительно усложняет работу с моделью.

Твердотельное моделирование

Твердотельное моделирование имеет в своей основе идеологию, которая существенно отличается от идеологии каркасно-поверхностного моделирования. Твердотельная модель представляет собой целостный объект, занимающий замкнутую часть пространства. Всегда можно точно сказать, находится ли точка внутри твердого тела, на его поверхности или вне тела. При изменении в модели любого элемента будут изменяться все другие элементы, которые связаны с ним. В результате изменится форма твердого тела, но сохранится его целостность.

Элементами, из которых строится твердое тело, могут быть: элементы вытягивания (полученные вытягиванием плоского контура перпендикулярно его плоскости); элементы вращения (полученные вращением плоского контура вокруг заданной оси); фаски; скругления; оболочки; ребра жесткости и др. Твердотельный объект строится путем последовательного «добавления» или «вычитания» элементов. Так, если к уже имеющейся твердотельной модели «добавить» элемент вытягивания, то этот элемент образует на модели выступ, а при «вычитании» элемента на модели образуется углубление. Если при построениях доступны одновременно несколько твердотельных объектов, то над любыми двумя твердотельными объектами, пересекающимися в пространстве, можно выполнять булевы операции объединения, вычитания и пересечения.

Твердотельное моделирование предполагает возможность установки параметрических зависимостей между элементами твердого тела или нескольких тел. При этом изменение одного из параметров (например, длины элемента) приводит к соответствующей перестройке всех параметрически связанных элементов. Такое моделирование, называемое параметрическим, дает конструктору дополнительные удобства. Так, можно установить параметрические зависимости между элементами твердотельной сборки и, тем самым, автоматизировать контроль собираемости изделия.

Гибридное моделирование

При гибридном моделировании обеспечивается возможность одновременной работы с твердотельными объектами и с поверхностями. При этом можно «отрезать» поверхностью часть твердого тела, превращать замкнутый поверхностями объем в твердое тело и т.п. Гибридное моделирование позволяет сочетать все удобства твердотельного моделирования с возможностью построения объектов сколь угодно сложной геометрической формы.