3.1. Магнитотвердые материалы
Применяются в основном для изготовления постоянных магнитов многих устройств в электро- и радиотехнике, автоматике, приборостроении, электронике. По сравнению с электромагнитами постоянного тока имеют ряд преимуществ, главные из которых - повышенная работоспособность, экономия материалов и потребления энергии, экономическая и техническая выгода применения.
Для получения высокой коэрцитивной силы в магнитных материалах, кроме выбора химического состава используют технологии, оптимизирующие кристаллическую структуру и затрудняющие процесс перемагничивания - это закалка сталей на мартенсит, дисперсионное твердение сплавов, создание высоких внутренних механических напряжений, посторонних включений или высокой магнитострикции и др. В результате затрудняются процессы смещения доменных границ. У высококоэрцитивных сплавов магнитная текстура создается путем их охлаждения в сильном магнитном поле.
- 1. Магнитные материалы
- 1.1. Магнитные характеристики
- 1.2. Классификация веществ по магнитным свойствам
- 1.3. Природа ферромагнетизма
- 1.4. Доменная структура
- 1.5. Намагничивание магнитных материалов. Кривая намагничивания
- 1.6. Магнитный гистерезис
- 1.11. Электрические свойства магнитных материалов
- 1.12. Классификация магнитных материалов
- 2. Магнитомягкие материалы
- 2.1. Технически чистое железо
- 2.2. Электротехнические стали
- 2.3. Пермаллои
- 2.4. Альсиферы
- 2.5. Магнитомягкие ферриты
- 2.6. Специальные магнитные материалы
- 2.7. Аморфные магнитные материалы (амм)
- 3. Магнитотвердые материалы
- 3.1. Магнитотвердые материалы
- 3.2. Сплавы на основе железа-никеля-алюминия
- 3.3. Металлокерамические магниты
- 3.4. Магнитотвердые ферриты
- 3.5. Сплавы на основе редкоземельных металлов (рзм)