Автоматизация поточного производства

контрольная работа

1. Особенности управления автоматическими поточными линиями, гибкими автоматизированными системами (ГПС) и роботами

Поточное производство в своем развитии идет по пути автоматизации.

Комплексно-механизированное и автоматизированное поточное производство - это система машин, оборудования, транспортных средств, обеспечивающая строго согласованное во времени выполнение всех стадий изготовления изделий, начиная от получения исходных заготовок и кончая контролем (испытанием) готового изделия и выпуска продукции через равные промежутки времени. Сначала были созданы автоматические линии и жесткие заводы-автоматы. С появлением электронно-программного управления создавались станки с числовым программным управлением (ЧПУ), обрабатывающие центры и автоматические линии, содержащие в качестве компонента оборудование с программным управлением.

В основе автоматизированного производства лежат автоматические линии, которые обладают всеми преимуществами поточного производства, позволяют непрерывность производственных процессов сочетать с автоматичностью их выполнения.

Автоматическая линия (АЛ) - это система машин-автоматов, размещенных по ходу технологического процесса и объединенных системой управления и автоматическими механизмами и устройствами для решения задач транспортировки, накопления заделов, удаление отходов, изменения ориентации.

Автоматические линии служат для выполнения в автоматическом режиме определенных операций (стадий) производственного процесса и зависят от вида исходных материалов (заготовок), габаритов, массы и технологической сложности изготовляемых изделий. Поэтому в состав АЛ может входить разнос количество оборудования: от 5-10 для изделий средней сложности до 100-150 ед. оборудования при массовом производстве сложных изделий.

В комплекс АЛ входит транспортная система, предназначенная для подачи заготовок со склада к стендам, перемещения подвесного технологического оборудования от одного стенда к другому, для транспортировки со стендов готовых изделий на главную линию или склад готовой продукции.

Выделяют жесткие (синхронные) автоматические линии с характерной жесткой межагрегатной связью и единым циклом работы станков и гибкие (несинхронные) АЛ с гибкой межагрегатной связью. В этом случае каждый станок имеет индивидуальный магазин-накопитель межоперационных заделов. В зависимости от функционального назначения АЛ в машиностроении могут быть заготовительными, механообрабатывающими, термическими, механосборочными, сборочными, контрольно-измерительными, упаковочными, консервационными и комплексными. Для автоматических линий определяют цикловую qц, потенциальную qп и фактическую qф производительность:

qц = Nц / Tц,

qп = Nц / (Tц + tт. о),

qф = Nц / (Tц + tт. о + tо. о),

где Nц - число изделий (деталей), изготовляемых за один цикл;

Тц - время одного цикла;

tт. о - время технологического обслуживания;

tо. о - время организационного обслуживания.

Время одного цикла равно сумме основного и вспомогательного времени:

Tц = tо + tв,

где to - основное время (на обработку изделия);

tв - вспомогательное время (на установку, закрепление и снятие изделия).

Таким образом, при цикловой производительности простои линии полностью отсутствуют, при потенциальной - учитываются затраты времени на регулировку и подналадку оборудования. Фактическая производительность учитывает потери времени по организационным причинам. Технический уровень автоматической линии отражает уровень цикловых непроизводительных затрат времени и внецикловых простоев из-за плановых и внеплановых ремонтов. Определяется он коэффициентом технического использования Кт. и по формуле:

.

Коэффициент общего использования АЛ Ко. т. и характеризует ее организационно-технический уровень. Отражает все непроизводительные затраты времени (как технические, так и организационные):

,

отсюда

qф = qц Ч Ко. т. и.

Такт (ритм) автоматической линии r определяется по формуле:

,

где tтр - время транспортировки изделия (детали) с одной позиции на другую.

Автоматические линии делятся на участки, синхронизация обеспечивается по группам операций на каждом участке. С этой целью создается компенсационный задел, который определяется по формуле:

,

где Zк - компенсационный задел;

- время создания компенсационного задела;

- меньший и больший такты смежных участков;

?r - допускаемая величина колебания усредненных тактов.

Отсюда допустима величина отклонения тактов на смежных участках определяется:

.

Широкое применение в практике нашли роторные машины и роторные автоматические линии. Автоматическая роторная линия (АРЛ) в отличие от автоматической линии монтируется в соответствии с требованиями технологического процесса из отдельных роторных машин и может быть перегруппирована на основе блочно-модульного принципа. Роторные линии работают следующим образом. Во вращающемся цилиндре-роторе имеются гнезда по количеству операций для изготовления деталей. Установленная особым приспособлением в гнездо заготовка направляется навстречу орудиям обработки. Поворот по кругу гнезда с заготовкой означает окончание одной операции и переход к следующей. Преимущество роторных линий состоит в исключении транспортных операций. Пока идет обработка одной и той же детали, они не требуют переналадки инструмента. На каждой роторной линии можно одновременно обрабатывать несколько разных деталей, устанавливая в разных позициях ротора необходимые инструменты, что позволяет автоматизировать изготовление небольших серий изделий.

Главные преимущества автоматических роторных линий - высокая производительность, безотказность, возможность получения синхронного процесса, непрерывность транспортного движения, быстросъемность (без остановки ротора). Роторные линии отличаются также определенной гибкостью. Они позволяют автоматизировать обработку некоторых однотипных деталей и получать высокие технико-экономические показатели.

В машиностроении на автоматических роторных линиях выполняются операции холодной и горячей штамповки, прессования из металлопорошков; обработки пластмасс, точного литья, токарной обработки тел вращения, нанесения покрытий, сборки и упаковки, контроля формы и размеров изделий.

Необходимое количество автоматических или автоматических роторных линий nл для выполнения годовой программы выпуска изделий (деталей) N определяется по формуле:

,

где qт - техническая производительность АЛ (АРЛ), шт. /ч;

Фд - действительный фонд времени работы линии за год, ч;

Кп - коэффициент, учитывающий потери времени по техническим и организационным причинам.

При nл < 0,8 использовать линию в одну смену неэффективно, поэтому надо оценить возможность создания многономенклатурной линии.

Прогрессивная область техники - робототехника. Она решает задачи создания отдельных промышленных роботов и роботизированных объектов и процессов. Промышленные роботы первого поколения (автоматические манипуляторы) работают по заданной "жесткой" программе. Промышленные роботы второго поколения оснащены системами адаптивного управления, представленные различными сенсорными устройствами (техническое зрение, очувствленные схваты и т.д.) и программами обработки сенсорной информации. Роботы третьего поколения позволяют выполнять самые сложные функции при замене в производстве человека, поскольку они обладают искусственным интеллектом.

Роботы-манипуляторы имеют механическую "руку", управляемую с пульта управления, и систему рычагов и двигателей, приводящих ее в действие. Наибольшее распространение получили манипуляторы с дистанционным управлением и механической "рукой" на подвижном или неподвижном основании.

Промышленные роботы имеют перед человеком преимущество в скорости и точности выполнения однообразных операций, манипулятор может осуществлять такие движения, которые человек не может выполнить физически.

Роботы-автоматы кроме "рук" имеют "электронный мозг" - миниатюрную специализированную электронно-вычислительную машину, которая управляет роботом по заданной программе с учетом изменения окружающей обстановки.

Сегодня роботы успешно заменяют человека на химических предприятиях и в научных лабораториях, где приходится иметь дело с вредными химическими или радиоактивными веществами, на атомных электростанциях, в помещениях с повышенным уровнем радиации, в кузнечных цехах для работы с раскаленными и тяжелыми заготовками, на морском дне при строительных работах и в других случаях.

Принципиальным отличием робототехники является ее широкая универсальность (многофункциональность) и гибкость (мобильность) при переходе на выполнение других, принципиально новых операций без дополнительных затрат.

Разнообразие производственных процессов предопределяет различные типы роботизированных технологических комплексов (РТК). Простейшим типом РТК является роботизированная технологическая ячейка (РТЯ), в которой выполняется небольшое количество технологических операций. РТЯ лежит в основе более крупных роботизированных комплексов: роботизированного технологического участка (РТУ), роботизированной технологической линии (РТЛ). РТК может быть представлен в виде цеха, состоящего из нескольких РТУ, автоматизированных складов и транспортных промышленных роботов. Высшей формой развития роботизированного производства является роботизированный завод.

В результате внедрения роботов меняется организация управления технологическими процессами, ликвидируются ручные операции, сокращаются межоперационные запасы предметов груда, повышается производительность труда и качество продукции.

Критерием функционирования РТК в отличие от АЛ и АРЛ является условие наиболее полной загрузки включенного в его состав оборудования. При решении организационно-экономических задач использования РТК важно обеспечить безотказность, долговечность, ремонтопригодность и сохраняемость РТК.

Одним из направлений внедрения достижений научно-технического прогресса и решения задач обновления и расширения ассортимента выпускаемой продукции является создание гибких производственных систем (ГПС).

ГПС в соответствии с государственным стандартом представляет собой совокупность в разных сочетаниях оборудования с числовым программным управлением, роботизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение заданного интервала времени, обладающих свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик.

ГПС предназначена для выполнения основных производственных процессов (заготовительных, механических и других видов обработки и сборки). Такая система обладает способностью быстрой переналадки для изготовления различных изделий данного конкретного производства.

Гибкие производственные системы применяются в различных типах производства и различаются по характеру выпускаемой продукции и видам выполняемых работ, по количеству и масштабу агрегатов, объединенных в систему, по степени автоматизации отдельных элементов и всей системы в целом, уровням организационной структуры и другим признакам.

По организационным признакам различают следующие виды ГПС:

гибкая автоматизированная линия (ГАЛ) - гибкая производственная система, в которой технологическое оборудование расположено в принятой последовательности технологических операций;

гибкий автоматизированный участок (ГАУ) - гибкая производительная система, функционирующая по технологическому маршруту, в котором предусмотрена возможность изменения последовательности использования технологического оборудования;

гибкий автоматизированный цех (ГАЦ) - гибкая производственная система, представляющая собой в различных сочетаниях совокупность гибких автоматизированных и роботизированных технологических участков для изготовления изделий заданной номенклатуры;

система обеспечения функционирования технологического оборудования ГПС - совокупность в общем случае взаимосвязанных автоматизированных систем, обеспечивающих проектирование изделий, технологическую подготовку их производства, управление гибкой производственной системой при помощи ЭВМ и автоматическое перемещение предметов производства и технологической оснастки.

В общем случае в систему обеспечения функционирования ГПС входят: автоматизированная транспортно-складская система (АТСС), система автоматизированного контроля (САК), автоматизированная система удаления отходов (АСУО), автоматизированная система инструментального обеспечения (АСИО), автоматизированная система управления технологическими процессами (АСУТП); автоматизированная система научных исследований (АСНИ), система автоматизированного проектирования (САПР), автоматизированная система технологической подготовки производства (АСТПП), автоматизированная система управления ГПС (АСУ ГПС) и др.

Обязательным требованием при проектировании ГПС является обеспечение блочно-модульного принципа. Составные части ГПС и ее возможные организационные структуры представлены на рисунке 1.

23

Рисунок 1. Структура ГПС

Гибкий производственный модуль (ГПМ) - это автономно функционирующая единица технологического оборудования. Роботизированный технологический комплекс (РТК) - это совокупность единиц технологического оборудования, промышленного робота и средств их оснащения, автономно функционирующая и осуществляющая многократные циклы. РТК, предназначенные для работы в ГПС, должны иметь автоматизированную переналадку и возможность встраивания в систему.

Основными характеристиками ГПМ и РТК являются: способность работать некоторое время автономно, без участия человека; автоматическое выполнение всех основных и вспомогательных операций; гибкость, удовлетворяющая требованиям мелкосерийного производства; простота наладки, устранения отказов основного оборудования и систем управления; совместимость с оборудованием традиционного и гибкого производства; высокая степень завершенности обработки деталей с одной установки; высокая экономическая эффективность.

Эффективность ГПС обеспечивается за счет функционирования системы автоматизированного проектирования, АСТПП, АСОПП и других автоматизированных систем.

Интеграция всех автоматизированных систем в рамках АСУП ведет к созданию гибкого автоматизированного производства (ГАП). Затраты на создание, приобретение, содержание и использование средств автоматизации очень велики, поэтому автоматизация производства должна иметь социально-экономическое обоснование.

Для обеспечения эффективности ГПС выделяют две группы организационных задач:

организацию взаимодействия ГПС со смежными подразделениями предприятия;

организацию производственного процесса в самой ГПС.

Производительность оборудования ГПС оценивают как степень использования фонда времени оборудования, входящего в ее состав. Для ГПС определяют коэффициенты:

использования фонда времени Кф. в рассчитываемый по формуле:

,

загрузки Кз. о - по формуле:

,

где , - фонды времени работы i-го вида оборудования по управляющей программе и входящего в ГПС соответственно;

- время вспомогательное и обслуживания i-го вида оборудования соответственно;

i = 1,..., n - количество оборудования в системе.

При использовании групповой технологии обработки деталей на ГПС целесообразно закреплять детали за оборудованием. Критерием закрепления деталей служит минимум переналадок.

Для каждой группы деталей i рассчитывается необходимое количество оборудования на каждой операции j:

где - количество оборудования для изготовления i-й группы деталей на каждой j-й операции;

Ni - программа выпуска i-й группы деталей;

кв - коэффициент потерь времени на восстановление оборудования;

ко - коэффициент организационных потерь времени;

Фi - фонд времени работы оборудования;

qij - производительность (потенциальная) оборудования.

Уровень автоматичности элементов ГПС характеризуется следующими показателями:

средней продолжительностью работы в автоматическом режиме (без вмешательства обслуживающего персонала);

средней продолжительностью обслуживания;

максимальной продолжительностью работы без поступления заготовок (полуфабрикатов) и инструмента извне.

Последний показатель определяется трудоемкостью обработки деталей, одновременно подаваемых на станок (при автоматической смене деталей - емкостью магазина заготовок), и ресурсом режущего инструмента (в частности, наличием подготовленных инструментов-дублеров).

При длительных циклах обработки (например, корпусных деталей) емкость магазина заготовок у станка обычного невелика (1-2 заготовки) и запас заготовок может поддерживаться за счет автоматической доставки заготовок (уже закрепленных в приспособлении) из центрального (или промежуточного) склада и установки их в магазин.

По мере совершенствования оборудования и интеллектуализации систем управления (введения функции автоматического измерения и внесения коррекции, активного контроля за состоянием режущего инструмента и автоматического перехода на инструмент-дублер) вмешательство оператора становится необходимым только для поддержания запаса инструмента и проведения переналадок.

Обеспечению бесперебойной работы ГПС способствует склад изделий, где хранятся заготовки и детали. Склад представляет собой определенное количество ячеек (как в местных накопителях, так и в нейтральном складе). Вместимость ячейки может быть принята равной размеру партии детали. Для надежного функционирования и упрощения оснастки проводится специализация ячеек, т.е. закрепление их за определенным оборудованием.

Одним из наиболее возможных критериев определения вместимости склада может служить вероятность его переполнения, т.е. сохранение работоспособности. Если принять вероятности переполнения склада для всех видов оборудования равными, средняя вероятность переполнения склада Рср будет равна:

,

где - вероятность переполнения ячеек, закрепленных за i-м оборудованием;

i = 1,..., n - количество оборудования.

Вероятность нахождения на складе Ni партии деталей определяется через коэффициент загрузки оборудования Кзi:

Рi (m ? Ni) = 1 - Кзi Ni + 1.

Решив это уравнение, получим вместимость склада i-го оборудования Ni:

.

Суммарная вместимость склада Ncкл ГПС будет равна:

.

В промышленности сформировались два основных направления создания ГПС. Первое направление - создание ГПС на базе вновь изготавливаемого, а в ряде случаев - специально проектируемого нового оборудования (ГПС-Н). Однако реальные возможности изготовления оборудования для ГПС-Н и значительные единовременные капиталовложения на его приобретение не позволяют удовлетворить существующие потребности. Поэтому возникло второе направление - создание ГПС на базе уже имеющегося на предприятии действующего оборудования с ЧПУ (ГПС-Д). Это направление в ряде случаев экономически более целесообразно, поскольку единовременные капиталовложения сводятся к затратам на модернизацию основного оборудования, приобретение вспомогательного оборудования (АТСС, оргоснастки рабочих мест) и системы управления (вычислительной техники и программного обеспечения), а также на проведение реконструкции цеха (участка), что в совокупности составляет 15-25% общей стоимости ГПС из 30 станков токарной и сверлильно-фрезерной групп. Для многоцелевых станков эта доля еще ниже. В ряде случаев при создании ГПС-Д частично приобретается новое оборудование.

ГПС-Н предназначаются для решения конкретной технологической задачи, например изготовления деталей типа тел вращения, корпусных или плоских деталей определенных типоразмеров, а наиболее высокоавтоматизированные ГПС - для изготовления всего нескольких наименований деталей. ГПС-Н содержат небольшое (2-10) число станков. При их создании за счет рационального выбора оборудования можно сократить количество используемых моделей станков, что при сохранении технологических возможностей увеличивает надежность и гибкость системы в целом. Например, первый автоматизированный участок АУ-1 (завод "Станкоконструкция", Москва) для обработки деталей типа тел вращения состоял из 13 станков 8 моделей. Цель создания ГПС-Д - повышение эффективности использования уже имеющегося оборудования с ЧПУ, и вполне естественно желание предприятия сконцентрировать в ГПС как можно большее число станков. Поэтому ГПС-Д часто состоят из нескольких технологически не связанных или слабо связанных подкомплексов. Поскольку парк станков с ЧПУ на предприятии формируется постепенно и не всегда имеет возможность приобретения одинаковых станков, для ГПС-Д характерно разнообразие моделей оборудования, в том числе станков близкого технологического назначения. В ряде случаев станки одной модели имеют разные устройства ЧПУ, различную оснащенность и т.д. Это уменьшает гибкость и надежность работы ГПС и существенно усложняет вопросы управления, однако ГПС-Д являются практически единственным средством повышения эффективности использования имеющегося парка станков с ЧПУ.

Делись добром ;)