Абсорбер тарельчатого типа

курсовая работа

2. Порядок расчета

1. Начальная относительная мольная концентрация поглощаемого компонента газовой фазы при входе в абсорбер

=0,538

2. Конечная относительная мольная концентрация поглощаемого компонента газовой фазы при выходе из абсорбера

=0,027

3. Начальная относительная мольная концентрация поглощаемого компонента в абсорбенте при входе в абсорбер:

Мпк = 44 СО2

Ма = 18 Вода

Мнг = 29 Воздух

=0 %

4. Конечная относительная мольная концентрация поглощаемого компонента в абсорбенте при выходе из абсорбера

=0,002 %

5. Объемный расход инертной составляющей газовой фазы (норм.усл.)

=8450

6. Мольный расход поглощаемого компонента

=193

7. Мольный расход абсорбента (инертной составляющей жидкой фазы)

=95793,9

8. Молекулярный вес газовой фазы

=34,25

9; Плотность газовой фазы

= 14,246 кг/м3

10. Объемный расход газовой фазы, входящей в абсорбционную колонну

=0,336

11. Мольный расход газовой фазы, поступающей в абсорбционную колонну

=503,8

12. Определяется диаметр колонны

Предельно допустимая скорость газовой фазы (условие превышения 10% уноса жидкой фазы с газовой) рассчитывается для ситчатых тарелок как

=0,419

wг- рабочая скорость газовой фазы в свободном сечении колонны, которая составляет

=0,335

=1,131 м.

Принимаем Dk=1,2 м

Выбираем материал Сталь Ст3.

При температуре 20 °С:

у=140 МПа [3, стр. 394, таб. 13,1]

Коэффициент прочности сварных швов:

Ш=1 [3, стр. 395, таб. 13,3]

Толщина стенки аппарата:

=4,357 мм

Принимаем с запасом толщину стенки s=10 мм [3, стр. 211]

Найдем толщину эллиптического приварного днища, при R=D, H=0.25D, где: R - радиус кривизны днища. D - диаметр аппарата, H - высота днища без учета цилиндрической отбортовки.

=2,175 мм

Принимаем толщину днища равную толщине аппарата s=10 мм.

13. По принятой площади свободного сечений отверстий fотв = 10 выраженной в % от общей площади свободного сечения аппарата, рассчитывается скорость газа в отверстиях тарелки

=3,351

14. Принимается отношение площади свободного сечения сегмента перешивного устройства к площади тарелки 10%, т.е. R=0,1 и определяется площадь свободного сечения переливного устройства

=0,113 м2

15. Скорость жидкой фазы в переливном устройстве:

=4,237

16. Гидравлическое сопротивление тарелки от сил поверхностного натяжения:

у = 0,0728 [4, стр. 501, таб. XXII]

=44,8 Па

17. Статическое сопротивление слоя жидкости

=191,3 Па

18. Высота статического слоя жидкости

=0,02 м

19. Сопротивление сухой тарелки о = 1,5 для сетчатых тарелок [ 3, стр. 210]

=120 Па

20. Общее сопротивление тарелки

=356 Па

21. Высота жидкости в переливном устройстве

=0,066 м

22. Минимальное расстояние между тарелками, обеспечивающее гидрозатвор в сливном патрубке

=0,045 м

Выбираем Hмт =500

23. Вязкость газовой фазы

мпк = 1,46 ·10-5 Па · с

миг = 1,84 ·10-5 Па · с [4, стр. 530, номогр. VI]

=1.647 · 10-5 Па · с

24. Кинетические коэффициенты процесса :

=5651.9

D = 13.8 ·10-6 [1, стр. 71, табл. 11-2]

=1,53 · 10-6

=0,7535

=0,0195

=3445

=0,117

=6534,9

D = 1.8 ·10-9 [1, стр. 71, табл. 11-2]

=555,6

=118560,8

=0,249

25. Рабочая площадь тарелки без учета площади двух переливов

=0,904 м2

26. Величина отношения рабочей площади тарелки к поперечному сечению колонны

=0,8

27. По справочным или расчетным данным в координатах y-x строится график равновесной зависимости yp= f(x) , выражающей связь концентраций поглощаемого компонента в газовой и жидкой фазах, находящихся в равновесии. Здесь же наносится прямая рабочая линия процесса абсорбции, выражающая связь рабочих концентраций, по 2 точкам прямой [т.1 ( у мн, хмк), т.2 ( умк , Хмн )] . Примечание: у, х - относительные, мольные концентрации.

;

l=255.5 ;

;

a=0.972 [1, стр. 604]

;

;

при хcp i ;

b=0.08724

28. Разбивается интервал изменения рабочих концентраций в колонне на участки, в пределах которых равновесную зависимость можно считать прямолинейной. Для каждого участка изменения концентраций определяется тангенс угла наклона равновесной линии

29. Рассчитывается коэффициент массопередачи для каждого участка изменения концентраций

x

y

p

Mpx

y*

Ap

Kyf

My

Cy

Xcp

BC

yk

x

0,00200

0,53800

0,545

134,674

0,266

0,00189

0,50964

0,516

134,310

0,250

139,063

0,00171

0,00976

1,00981

0,00194

0,25667

0,50712

0,00194

0,00178

0,48128

0,488

133,948

0,235

138,313

0,00172

0,00981

1,00986

0,00183

0,24377

0,47888

0,00183

0,00167

0,45292

0,459

133,587

0,220

137,569

0,00173

0,00986

1,00991

0,00172

0,23080

0,45063

0,00172

0,00156

0,42456

0,430

133,229

0,205

136,831

0,00174

0,00992

1,00997

0,00161

0,21774

0,42239

0,00161

0,00145

0,39620

0,401

132,873

0,190

136,099

0,00175

0,00997

1,01002

0,00150

0,20461

0,39415

0,00150

0,00133

0,36784

0,373

132,518

0,175

135,373

0,00176

0,01002

1,01007

0,00139

0,19140

0,36591

0,00139

0,00122

0,33948

0,344

132,166

0,160

134,653

0,00177

0,01007

1,01012

0,00128

0,17811

0,33767

0,00128

0,00111

0,31112

0,315

131,815

0,145

133,938

0,00178

0,01013

1,01018

0,00117

0,16474

0,30944

0,00117

0,00100

0,28276

0,286

131,466

0,130

133,229

0,00179

0,01018

1,01023

0,00106

0,15130

0,28121

0,00106

0,00089

0,25440

0,258

131,119

0,115

132,526

0,00180

0,01023

1,01028

0,00095

0,13778

0,25298

0,00095

0,00078

0,22603

0,229

130,774

0,101

131,828

0,00181

0,01029

1,01034

0,00083

0,12419

0,22475

0,00083

0,00067

0,19767

0,200

130,431

0,086

131,136

0,00182

0,01034

1,01039

0,00072

0,11052

0,19653

0,00072

0,00056

0,16931

0,172

130,089

0,072

130,449

0,00183

0,01039

1,01045

0,00061

0,09677

0,16830

0,00061

0,00045

0,14095

0,143

129,749

0,057

129,767

0,00184

0,01045

1,01050

0,00050

0,08296

0,14008

0,00050

0,00034

0,11259

0,114

129,411

0,043

129,091

0,00185

0,01050

1,01056

0,00039

0,06907

0,11186

0,00039

0,00022

0,08423

0,085

129,075

0,029

128,42

0,00185

0,01055

1,01061

0,00028

0,05511

0,08365

0,00028

0,00011

0,05587

0,057

128,740

0,014

127,755

0,00186

0,01061

1,01066

0,00017

0,04107

0,05543

0,00017

0,00000

0,02700

0,027

128,402

0,000

127,088

0,00187

0,01066

1,01072

0,00006

0,02671

0,02671

0,00006

Па

Па

30. Находятся числа единиц переноса для этих же участков изменения концентраций

31. Для найденных значений чисел единиц переноса вычисляют значение величины Сyi

32. Вычисляется среднее значение концентрации абсорбируемого компонента в абсорбенте для каждого участка

33. Для средних значений концентраций xср,i строится ряд прямых линий A1 C1; А2С2 ; A3C3 и т.д., параллельных оси ординат.

34. Рабочая концентрация газа на тарелке над жидкостью состава xср,i будет всегда меньше равновесной. Этим концентрациям будут соответствовать точки В1 ; B2 ; В3 и т.д., лежащие на отрезках A1 C1; А2С2 ; A3C3 , ниже точек А1 ;A2 ;A3 и т.д. Положения этих точек определяются из выражения

35. На диаграмме y-x от точек С на кривой равновесия откладываются найденные отрезки BC и через полученные точки В12 ; В3 и т.д. наносится кривая, являющаяся кинетической линией процесса.

36. Между найденной кинетической и рабочей линиями проводится ступенчатое построение ломаной линии в пределах концентраций Хн и Хк . Число ступеней этой ломаной линии дает число тарелок абсорбционной колонны Nобщ

37. Общее сопротивление тарелок в колонне

38. Расчет числа люков:

Разместим люки через каждые 6 тарелок:

n=5.667

Принимаем 6 люков (1 люк над 34-й тарелкой)

38. Общая высота колонны определяется

мм

Делись добром ;)