logo search
MU_1_Stan_Roboty

Основные понятия и определения. Структура манипуляторов. Геометро-кинематические характеристики.

    Формула строения - математическая запись структурной схемы манипулятора, содержащая информацию о числе его подвижностей, виде кинематических пар и их ориентации относительно осей базовой системы координат (системы, связанной с неподвижным звеном).

    Движения, которые обеспечиваются манипулятором делятся на:

    В соответствии с этой классификацией движений, в манипуляторе можно выделить два участка кинематической цепи с различными функциями: механизм руки и механизм кисти. Под "рукой" понимают ту часть манипулятора, которая обеспечивает перемещение центра схвата – точки М (региональные движения схвата); под "кистью" – те звенья и пары, которые обеспечивают ориентацию схвата (локальные движения схвата).     Рассмотрим структурную схему антропоморфного манипулятора, то есть схему которая в первом приближении соответствует механизму руки человека (рис.19.3).

Рис. 3

    Этот механизм состоит из трех подвижных звеньев и трех кинематических пар: двух трехподвижных сферических А3сф и С3сф и одной одноподвижной вращательной В.

    Кинематические пары манипулятора характеризуются: именем или обозначением КП - заглавная буква латинского алфавита (A,B,C и т.д.); звеньями, которые образуют пару (0/1,1/2 и т.п.); относительным движением звеньев в паре ( для одноподвижных пар - вращательное, поступательное и винтовое); подвижностью КП (для низших пар от 1 до 3, для высших пар от 4 до 5); осью ориентации оси КП относительно осей базовой или локальной системы координат.     Рабочее пространство манипулятора - часть пространства, ограниченная поверхностями огибающими к множеству возможных положений его звеньев.     Зона обслуживания манипулятора - часть пространства соответствующая множеству возможных положений центра схвата манипулятора. Зона обслуживания является важной характеристикой манипулятора. Она определяется структурой и системой координат руки манипулятора, а также конструктивными ограничениями наложенными относительные перемещения звеньев в КП.     Подвижность манипулятора W - число независимых обобщенных координат однозначно определяющее положение схвата в пространстве.

или для незамкнутых кинематических цепей:

    Маневренность манипулятора М - подвижность манипулятора при зафиксированном (неподвижном) схвате.

    Возможность изменения ориентации схвата при размещении его центра в заданной точке зоны обслуживания характеризуется углом сервиса - телесным углом , который может описать последнее звено манипулятора (звено на котором закреплен схват) при фиксации центра схвата в заданной точке зоны обслуживания.

где: fC - площадь сферической поверхности, описываемая точкой С звена 3, lCM- длина звена 3.

    Относительная величина k = / (4), называется коэффициентом сервиса. Для манипулятора, изображенного на рис.19.4,

подвижность манипулятора:

W = 6 * 3 - (3 * 2 - 5 * 1) = 18 - 11 = 7;

маневренность:

M = 7 - 6 = 1;

формула строения:

W = [10 + 10 + 10 ] + 21 + [32 + 32 + 32 ].

Рис. 4

    Структура кинематической цепи манипулятора должна обеспечивать требуемое перемещение объекта в пространстве с заданной ориентацией. Для этого необходимо, чтобы схват манипулятора имел возможность выпонять движения минимум по шести координатам: трем линейным и трем угловым. Рассмотрим на объекте манипулирования точку М, которая совпадает с центром схвата. Положение объекта в неподвижной (базовой) системе координат 0x0y0z0 определяется радиусом-вектором точки М и ориентацией единичного вектора с началом в этой точке. В математике положение точки в пространстве задается в одной из трех систем координат:

    Ориентация объекта в пространстве задается углами ,  и , которые вектор ориентации образует с осями базовой системы координат. На рис. 19.5 дана схема шести подвижного манипулятора с вращательными кинематическими парами с координатами объекта манипулирования.

Рис. 5

    При структурном синтезе механизма манипулятора необходимо учитывать следующее:

    При выполнении первого условия кинематические пары с несколькими подвижностями заменяют эквивалентными кинематическими соединениями. Пример такого соединения для сферической пары дан на рис. 19.6.     Перемещение схвата в пространстве можно обеспечить, если ориентировать оси первых трех кинематических пар по осям одной из осей координат. При этом выбор системы координат определяет тип руки манипулятора и вид его зоны обслуживания. По ГОСТ 25685-83 определены виды систем координат для руки манипулятора, которые приведены в таблице 19.1. Здесь даны примеры структурных схем механизмов соответствующие системам координат. Структурные схемы механизмов кисти, применяемые в манипуляторах, даны в таблице 19.2. Присоединяя к выходному звену руки тот или иной механизм кисти, можно получить большинство известных структурных схем манипуляторов, которые применяются в реальных промышленных роботах.

Сферическая кинематическая пара

Эквивалентное кинематическое соединение

Рис. 6

Системы координат "руки" манипулятора.

Таблица 1

Прямоугольная (декартова)

Цилиндрическая

Сферическая

Угловая (ангулярная)

Другие

Таблица 2

    Структура манипулятора определяется и местом размещения приводов. Если приводы размещаются непосредственно в кинематических парах, то к массам подвижных звеньев манипулятора добавляются массы приводов. Суммарная нагрузка на приводы и их мощность увеличиваются, а отношение массы манипулятора к полезной нагрузке (максимальной массе объекта манипулирования) уменьшается. Поэтому при проектировании роботов приводы звеньев руки, как наиболее мощные и обладающие большей массой, стремятся разместить ближе к основанию робота. Для передачи движения от привода к звену используются дополнительные кинематические цепи. Рассмотрим схему руки манипулятора ПР фирмы ASEA (рис.19.7). К трехзвенному механизму с ангулярной системой координат добавлены:

    Таким образом, в рычажном механизме можно выделить кинематическую цепь руки (звенья 1,2 и 3) и кинематические цепи приводов. Манипуляторы использующие принцип размещения приводов на основании имеют более сложные механизмы. Однако увеличение числа звеньев и кинематических пар компенсируется уменьшением масс и моментов инерции, подвижных звеньев манипулятора. Кроме того, замкнутые кинематические цепи повышают точность и жесткость механизма. В целом манипуляторы, использующие принципы комбинированного размещения приводов (часть приводов на основании, часть на подвижных звеньях), обладают лучшими энергетическими и динамическими характеристиками, а также более высокой точностью.     В кинематических схемах рассмотренных манипуляторов веса звеньев вызывают дополнительную нагрузку на приводы. Фирма SKILAM разработала робот SANCIO (рис. 19.8) в котором веса приводов и звеньев воспринимаются кинематическими парами, а на момент двигателей влияют только через силы трения. Такая структурная схема механизма потребовала увеличения размеров кинематических пар, однако в целом был получен существенный выигрыш по энергетическим и динамическим показателям.     Данные примеры не охватывают всех возможных ситуаций рационального выбора структуры манипуляторов. Они только демонстрируют наиболее известные из удачных структурных схем.

Рис. 7

Рис. 8

    Важная особенность манипуляторов – изменение структуры механизма в процессе работы, о чем говорилось на лекции по структуре механизмов. В соответствии с циклограммой или программой работы робота, в некоторых кинематических парах включаются тормозные устройства. При этом два звена механизма жестко соединяются с друг другом, образуя одно звено. Из структурной схемы механизма исключается одна кинематическая пара и одно звено, число подвижностей схвата механизма уменьшается (обычно на единицу). Изменяется структура механизма и в тех случаях, когда в процессе выполнения рабочих операций (на пример, при сборке или сварке) схват с объектом манипулирования соприкасается с окружающими предметами, образуя с ними кинематические пары. Кинематическая цепь механизма замыкается, а число подвижностей уменьшается. В этом случае в цепи могут возникать избыточные связи. Эти структурные особенности манипуляторов необходимо учитывать при программировании работы промышленного робота.     Быстродействие ПР определяют максимальной скоростью линейных перемещений центра схвата манипулятора. Различают ПР с малым (VM<0.5 м/с), средним (0.5 < VM < 1.0 м/с) и высоким (VM>1.0м/с) быстродействием. Современные ПР имеют в основном среднее быстродействие и только около 20% - высокое.     Точность манипулятора ПР характеризуется абсолютной линейной погрешностью позиционирования центра схвата. Промышленные роботы делятся на группы с малой ( rM< 1 мм), средней (0.1 мм <  rM < 1 мм) и высокой ( rM< 0.1 мм) точностью позиционирования.