1.4 Проектные процедуры.
Создать проект объекта (изделия или процесса) означает выбрать структуру объекта, определить значения всех его параметров и представить результаты в установленной форме. Результаты (проектная документация) могут быть выражены в виде чертежей, схем, пояснительных записок, программ для программно-управляемого технологического оборудования и других документов на бумаге или на машинных носителях информации.
Разработка (или выбор) структуры объекта есть проектная процедура, называемая структурным синтезом, а расчет (или выбор) значений параметров элементов — процедура параметрического синтеза.
Задача структурного синтеза формулируется в системотехнике как задача принятия решений (ЗПР). Ее суть заключается в определении цели, множества возможных решений и ограничивающих условий. Классификацию ЗПР осуществляют по ряду признаков. По числу критериев различают задачи одно- и многокритериальные. По степени неопределенности различают ЗПР детерминированные, ЗПР в условиях риска — при наличии в формулировке задачи случайных параметров, ЗПР в условиях неопределенности, т.е. при неполноте или недостоверности исходной информации.
Реальные задачи проектирования, как правило, являются многокритериальными. Одна из основных проблем постановки многокритериальных задач — установление правил предпочтения вариантов. Способы сведения многокритериальных задач к однокритериальным и последующие пути решения изучаются в дисциплинах, посвященных методам оптимизации и математическому программированию.
Наличие случайных факторов усложняет решение ЗПР. Основные подходы к решению ЗПР в условиях риска заключаются или в решении “для наихудшего случая”, или в учете в целевой функции математического ожидания и дисперсии выходных параметров. В первом случае задачу решают как детерминированную при завышенных требованиях к качеству решения, что является главным недостатком подхода. Во втором случае достоверность результатов решения намного выше, но возникают трудности с оценкой целевой функции. Применение метода Монте-Карло в случае алгоритмических
моделей становится единственной альтернативой и, следовательно, для решения требуются значительные вычислительные ресурсы.
Существуют две группы ЗПР в условиях неопределенности. Одна из них решается при наличии противодействия разумного противника. Такие задачи изучаются в теории игр, для задач проектирования в технике они не характерны. Во второй группе достижению цели противодействие оказывают силы природы. Для их решения полезно использовать теорию и методы нечетких множеств.
Например, при синтезе структуры автоматизированной системы постановка задачи должна включать в качестве исходных данных следующие сведения:
множество выполняемых системой функций (другими словами, множество работ, каждая из которых может состоять из одной или более операций);
типы допустимых для использования серверов (машин), выполняющих функции системы;
множество внешних источников и потребителей информации;
во многих случаях задается также некоторая исходная структура системы в виде взаимосвязанной совокупности серверов определенных типов; эта структура может рассматриваться как обобщенная избыточная или как вариант первого приближения;
различного рода ограничения, в частности, ограничения на затраты материальных ресурсов и (или) на времена выполнения функций системы.
Задача заключается в синтезе (или коррекции) структуры, определении типов серверов (программно-аппаратных средств), распределении функций по серверам таким образом, чтобы достигался экстремум целевой функции при выполнении заданных ограничений.
Конструирование, разработка технологических процессов, оформление проектной документации — частные случаи структурного синтеза.
Задачу параметрического синтеза называют параметрической оптимизацией.
Следующая после синтеза группа проектных процедур — процедуры анализа. Цель анализа – получение информации о характере функционирования и значениях выходных параметров Y при заданных структуре объекта, сведениях о внешних параметрах Q и параметрах элементов N. Если заданы фиксированные значения параметров N и Q, то имеет место процедура одновариантного анализа, которая сводится к решению уравнений математической модели и вычислению вектора выходных параметров Y. Если заданы статистические сведения о параметрах N и нужно получить оценки числовых характеристик распределений выходных параметров (например, оценки математических ожиданий и дисперсий), то это процедура статистического анализа.
В процедурах многовариантного анализа определяется влияние внешних параметров, разброса и нестабильности параметров элементов на выходные параметры. Процедуры статистического анализа и анализа чувствительности — характерные примеры процедур многовариантного анализа.
- Содержание
- 1. Инженерное проектирование
- 1.1 Виды проектирования
- 1.2 Структура проектирования.
- 1.3 Стадии проектирования
- 1.4 Проектные процедуры.
- 1.5 Системный подход.
- 2. Интегрированные системы проектирования (исп)
- 2.1 Структура систем автоматизированного проектирования
- 2.2 Классификация сапр.
- 2.3 Cad, cam, cae системы.
- 2.4 Технология cals.
- 3. Техническое обеспечение исп.
- 3.1 Требования к техническому обеспечению.
- 3.2 Виды сетей.
- 3.3 Вычислительные системы.
- 3.4 Периферийные устройства.
- 4. Математическое обеспечение в исп
- 4.1 Виды математических моделей и требования к ним.
- 4.2 Формирование моделей на макроуровне.
- 4.3 Моделирование аналоговых устройств на функционально-логическом уровне.
- 4.4 Моделирование цифровых устройств на функционально-логическом уровне.
- 4.4 Математическое обеспечение анализа на системном уровне.
- 5. Автоматизированные системы управления (асу).
- 5.1 Иерархический принцип построения систем управления производством.
- 5.2 Функциональная структура систем управления производством.
- 5.3 Техническая структура и программное обеспечение автоматизированных систем управления производством.