4 Технологический расчет аппаратов
1. Масса поглощаемого вещества и расхода поглотителя
Пересчитаем исходные концентрации в относительные массовые доли:
где:
- мольная масса абсорбтива;
- мольная масса инертного газа;
Объемный расход инертного газа при рабочих условиях:
Массовый расход инертного газа:
где: - плотность инертного газа при 0 0C;
Уравнение материального баланса:
Используя данные равновесия:
Отсюда минимальный расход поглотителя:
, так как здесь
концентрация абсорбтива в воде, равновесная с газом начального состава; определяем из уравнения равновесной прямой:
здесь
- мольная масса воды
=> , где
где ,
здесь Е-коэффициент Генри, П-давление среды.
Действительный расход:
Удельный расход поглотителя:
2. Движущая сила массопередачи
Для случая линейной равновесной зависимости между составами фаз, принимая модель идеального вытеснения в потоках обеих фаз, определим движущую силу в единицах концентрации газовой фазы:
кг/кг
3. Скорость газа и диаметр абсорбера
Предельную скорость газа, выше которой наступает захлебывание насадочных абсорберов, можно рассчитать по уравнению:
, здесь
- ускорение свободного падения;
-плотность воды;
так как поглотитель вода;
Подбираем насадку:
- удельная поверхность насадки;
свободный объем, тогда
Принимаем рабочую скорость равную:
Определяем диаметр абсорбера из уравнения расхода:
Выбираем стандартный диаметр обечайки абсорбера и определяем действительную рабочую скорость газа в колонне.
4. Плотность орошения и активная поверхность насадки
Плотность орошения:
, где
Минимальная эффективная плотность орошения:
, где
линейная эффективная плотность орошения;
Доля активной поверхности насадки может быть найдена:
здесь
p, q - коэффициенты.
5. Расчет коэффициентов массоотдачи и массопередачи
Коэффициент массоотдачи в газовой фазе:
, здесь
- эквивалентный диаметр насадки;
Dy - коэффициент диффузии;
- мольные объемы;
Диффузионный критерий Нуссельта для газовой фазы:
, здесь
Критерий Рейнольдса для газовой фазы в насадке:
здесь
, здесь
вязкость газа при 00C;
С=114 - константа Сатерленда;
Диффузионный критерий Прандтля для газовой фазы:
, тогда
Коэффициент массоотдачи в жидкой фазе:
, здесь
- приведенная толщина стекающей пленки жидкости, здесь вязкость воды;
- коэффициент диффузии абсорбтива в воде при 200C;
Диффузионный критерий Нуссельта для жидкой фазы:
, здесь
Модифицированный критерий Рейнольдса для стекающей по насадке пленке жидкости:
Диффузионный критерий Прандтля для жидкой фазы:
,
Коэффициент массоотдачи:
Переводим коэффициенты массоотдачи в требуемую размерность:
Коэффициент массопередачи по газовой фазе:
6. Поверхность массопередачи и высота абсорбера
Поверхность массопередачи в абсорбере:
Высота насадки, требуемая для создания этой поверхности:
,
Высота абсорбера:
здесь
- число слоев
высота одного слоя;
- расстояние между слоями;
- высота сепарационной части;
- высота кубовой части.
- Введение
- 1 Теоретические основы абсорбции
- 2 Растворы газов в жидкостях
- 3 Абсорбционные методы очистки отходящих газов от примесей кислого характера
- 3.1 Очистка газов от диоксида серы
- 3.1.1 Абсорбция водой
- 3.1.2 Известняковые и известковые методы
- 3.1.3 Магнезитовый метод
- 3.2 Очистка газов от сероводорода
- 3.2.1 Вакуум - карбонатные методы
- 3.2.2 Фосфатный процесс
- 3.2.3 Щелочно - гидрохиновый метод
- 3.3.1 Абсорбция водой
- 3.3.2 Абсорбция щелочами
- 3.3.3 Селективные абсорбенты
- 4 Технологический расчет аппаратов
- 5 Преимущества и недостатки абсорбционных методов очистки отходящих газов
- 6 Заключение
- 1.4 Недостатки и преимущества абсорбционного метода очистки газов
- 1.4 Недостатки и преимущества абсорбционного метода очистки газов
- 69 Абсорбционные методы очистки газов: сущность, достоинства и
- 63.Абсорбционные методы очистки газов.
- 3.1 Абсорбционная очистка газов
- 16. Абсорбционные методы очистки газов от сероводорода и галогенов.
- 18. Адсорбционные методы очистки отходящих газов от диоксида серы, оксидов азота, галогенов и сероводорода.
- 84. Методы очистки газов
- 2.3. Методы очистки отходящих газов от аэрозолей