Способы изготовления
Для изготовления корпусов обычно применяют серый чугун СЧ18 и сталь Ст3, в отдельных случаях (для корпусов поворотных приспособлений) - легкие сплавы на алюминиевой основе, а также магниевые сплавы, имеющие малую плотность, что облегчает перемещение тяжелых или поворотных приспособлений.
В зависимости от типа производства корпусы приспособлений изготавливают литьем, сваркой, ковкой, резкой, используя сортовой материал (прокат), а также сборкой из элементов на винтах или с гарантированным натягом.
Литьем выполняют преимущественно корпуса сложных конфигураций; сроки и стоимость их изготовления довольно длительны.
Сваркой также можно получать корпуса сложных конфигураций; сроки и стоимость их изготовления могут быть значительно снижены. Применяя усиливающие ребра, уголки, косынки, можно получать вполне жесткие корпусы. Стоимость сварных корпусов может быть вдвое ниже стоимости литых, а масса их уменьшена до 40%. Элементы сварного корпуса размечают и разрезают из сортового материала газовым резаком. Литье корпусов может оказаться выгодным при изготовлении нескольких одинаковых корпусов. Для сокращения сроков и снижения стоимости подготовки производства следует расширять применение сварных корпусов, особенно корпусов крупных размеров.
Ковкой и резкой сортового материала получают корпусы простых конфигурации и небольших размеров. Лишние объемы металла (напуски) снимают при последующей механической обработке заготовки. Для корпусов сложной конфигурации эти методы могут оказаться нерентабельными, а вынужденное упрощение конструкции приводит к утолщению стенок и увеличению массы детали.
В корпусах сборного типа с введением дополнительных сопряжений объем механической обработки несколько возрастает, а жесткость снижается.
На рис. 6.8 показаны варианты (литого, сварного, сборного и кованого) получения заготовки корпуса одной конструкции. Конфигурация сварного корпуса почти такая же, как и литого (рис. 2.68, а и б). Конфигурация заготовки сборного и особенно кованого корпуса упрощается.
При проектировании корпуса независимо от способа его изготовления необходимо предусмотреть:
-
обеспечение требований жесткости, прочности и
виброустойчивости;
-
достаточные зазоры между деталью и стенками корпуса,
позволяющие свободно ставить и снимать деталь;
-
возможность легкого удаления стружки.
Корпуса являются наиболее трудоемкими деталями приспособлений. Цикл их изготовления длителен, так как заготовки корпусов после предварительной механообработки должны подвергаться старению. Для сокращения сроков подготовки производства и снижения стоимости приспособлений в последнее время стали использовать стандартные литые заготовки корпусов. Из отдельных простых стандартных заготовок можно собрать более сложные корпуса.
Стандартные заготовки корпусов отливаются из чугуна марок СЧ818 и СЧ20 ГОСТ1412-79 после предварительной механической обработки подвергаются старению.
Рис. 2.68. Технологические варианты корпуса:
а – литого; б – сварного; в – сборного; г – кованого
Дальнейшим шагом вперед явилась стандартизация элементов корпусов, что позволило без дополнительной обработки или с минимальной доработкой из отдельных стандартных элементов собирать корпуса приспособлений.
Стандартизовано 18 типов (260 типоразмеров) элементов корпусов, из которых можно собирать наиболее типичные корпуса приспособлений для установки деталей габаритами не более 400х400х700мм на фрезерных и сверлильных станках.
Корпуса станочных приспособлений для работ с небольшими силами резания можно выполнять из эпоксидных смол литьем в разовые формы из гипса, картона или пластилина. После 10-12 часовой выдержки при комнатной температуре процесс отверждения эпоксидного компаунда заканчивается. Время отверждения может быть доведено до 4-6 часов при нагреве отливки до 100-120°С. Прочность корпуса повышают введением в смолу наполнителя (стекловолокна, железного порошка) или металлической арматуры. Предел прочности эпоксидных компаундов на растяжение (без арматуры) 60МПа и на сжатие – до 150МПа. Эпоксидные компаунды имеют хорошую адгезию к металлам, однако закаливаемые элементы должны быть хорошо обезжирены промывкой в ацетоне, щелочных ваннах или прожиганием на газовом пламени. Отдельные детали (втулки, планки, шпильки) могут быть установлены в литейную форму и залиты в корпус при его изготовлении. Корпусы из эпоксидных компаундов легки, прочны, износостойки, хорошо гасят вибрации. Из изготавливают с минимальной механической обработкой. Корпусы длительное время сохраняют свои размеры, так как усадка эпоксидных компаундов мала (0,05-0,1%). в отдельных случаях небольшие корпусы в виде прямоугольных либо квадратных плит или планшайбы могут быть изготовлены из текстолита. Они легки и износостойки.
Корпусы приспособлений простейших конструкций выполняют в виде единой базовой детали различной конфигурации. Корпусы сложных приспособлений представляют собой сборную конструкцию. Ее элементы могут быть выполнены литьем, сваркой или из сортового проката. Выбор варианта определяется условиями эксплуатации приспособления, сроками, себестоимостью и технологией его изготовления.
Рис. 2.69. Технологические варианты корпуса:
а – литого; б – сварного; в – сборного; г – кованого
Дальнейшим шагом вперед явилась стандартизация элементов корпусов, что позволило без дополнительной обработки или с минимальной доработкой из отдельных стандартных элементов собирать корпуса приспособлений.
Стандартизовано 18 типов (260 типоразмеров) элементов корпусов, из которых можно собирать наиболее типичные корпуса приспособлений для установки деталей габаритами не более 400х400х700мм на фрезерных и сверлильных станках.
Корпуса станочных приспособлений для работ с небольшими силами резания можно выполнять из эпоксидных смол литьем в разовые формы из гипса, картона или пластилина. После 10-12 часовой выдержки при комнатной температуре процесс отверждения эпоксидного компаунда заканчивается. Время отверждения может быть доведено до 4-6 часов при нагреве отливки до 100-120°С. Прочность корпуса повышают введением в смолу наполнителя (стекловолокна, железного порошка) или металлической арматуры. Предел прочности эпоксидных компаундов на растяжение (без арматуры) 60МПа и на сжатие – до 150МПа. Эпоксидные компаунды имеют хорошую адгезию к металлам, однако закаливаемые элементы должны быть хорошо обезжирены промывкой в ацетоне, щелочных ваннах или прожиганием на газовом пламени. Отдельные детали (втулки, планки, шпильки) могут быть установлены в литейную форму и залиты в корпус при его изготовлении. Корпусы из эпоксидных компаундов легки, прочны, износостойки, хорошо гасят вибрации. Из изготавливают с минимальной механической обработкой. Корпусы длительное время сохраняют свои размеры, так как усадка эпоксидных компаундов мала (0,05-0,1%). в отдельных случаях небольшие корпусы в виде прямоугольных либо квадратных плит или планшайбы могут быть изготовлены из текстолита. Они легки и износостойки.
Корпусы приспособлений простейших конструкций выполняют в виде единой базовой детали различной конфигурации. Корпусы сложных приспособлений представляют собой сборную конструкцию. Ее элементы могут быть выполнены литьем, сваркой или из сортового проката. Выбор варианта определяется условиями эксплуатации приспособления, сроками, себестоимостью и технологией его изготовления.
- Содержание:
- Общие сведения о приспособлениях
- Элементы приспособлений
- 3. Приспособления для металлорежущих станков основных групп
- 4. Проектирование специальных приспособлений
- Введение
- 1.Общие сведения о приспособлениях
- Назначение приспособлений
- 1.2. Классификация приспособлений
- 1.3.Краткие характеристики стандартных систем.
- Элементы приспособлений
- 2.1. Установочные элементы
- 2.1.1. Правила установки заготовок
- Погрешности установки заготовок
- 2.1.3. Установка заготовок по плоским базовым поверхностям
- 2.1.4. Установка заготовок по цилиндрической поверхности и перпендикулярной к её оси плоскости
- 2.1.5 Установка заготовок на призму
- 2.1.6. Установка заготовок на оправки
- 2.1.5 Установка заготовок на пальцы
- 2.1.6. Установка заготовок по двум отверстиям и плоскости
- 2.1.9. Установка заготовок по центровым отверстиям
- 2.2. Зажимные элементы
- 2.2.1. Требования, предъявляемые к зажимным элементам
- Методика расчета сил закрепления
- 2.2.3. Этапы определения величины закрепления.
- 2.2.4. Примеры определения величины силы закрепления.
- 2.2.5. Расчет закрепления при различных схемах установки
- 2.2.6. Классификация зажимных механизмов
- Винтовые механизмы
- Клиновые механизмы
- Клиноплунжерные механизмы
- 2.2.10. Эксцентриковые механизмы
- 2.2.11. Рычажные механизмы
- Пружинные механизмы
- Многократные зажимы
- 2.4. Силовые приводы
- 2.4.1. Назначение силовых приводов
- 2.4.2. Пневматические приводы
- 2.4.3. Гидравлические приводы
- 2.4.4 Пневмогидравлические приводы
- 2.4.5. Вакуумные зажимные устройства
- 2.4.6. Электромеханические приводы
- 2.4.7. Электромагнитные приводы
- 2.4.8. Магнитные приводы
- 2.4.9. Центробежно-инерционные приводы
- 2.4.10. Приводы от движущихся частей станка
- 2.4.11. Приводы от сил резания
- 2.5. Устройства для направления и определения положения режущих инструментов
- 2.5.1.Назначение и классификация
- 2.5.2. Шаблоны, установы, щупы
- 2.5.3. Кондукторные втулки, направляющие втулки, кондукторные плиты
- 2.5.4 Копиры
- Копиров
- 2.6. Корпуса приспособлений
- 2.6.1. Назначение
- 2.6.2. Требования к корпусам
- 2.6.3. Элементы центрирования и крепления корпусов
- 2.6.4. Отвод сож и стружки
- Способы изготовления
- 2.7. Вспомогательные механизмы и элементы
- 2.7.1. Делительные и поворотные устройства
- 2.7.2. Вспомогательные элементы
- 2.8. Элементы приспособлений многократного применения
- 3. Приспособления для металлорежущих станков
- 3.1. Выбор приспособлений для установки и закрепления режущего инструмента
- 3.2. Приспособления для токарных станков
- 3.2.1. Кулачковые патроны
- Заготовок типа вала (а) и диска (б):
- 3.2.2. Поводковые патроны
- 3.2.3. Цанговые патроны
- 3.2.4. Мембранные патроны
- 3.2.5. Токарные центры
- 3.2.6. Токарные оправки
- 3.2.7. Люнеты
- 3.2.8. Планшайбы
- 3.3. Приспособления для фрезерных станков
- Машинных тисков на подставках
- Вертикально-фрезерных станков:
- С ручным приводом:
- И гидравлический передвижной прижим (б):
- 3.3.2. Делительные приспособления
- Фрезерного станка:
- Делительным головкам:
- Фрезерных станков:
- Делении на делительной головке
- 3.3.3. Приспособления, расширяющие технологические возможности фрезерных станков
- 3.4. Приспособления для сверлильных станков
- 3.4.1. Кондукторы
- Со встроенным пневмоприводом:
- В скальчатом кондукторе консольного типа:
- И распределительный пневматический кран с автоматическим управлением (б):
- 3.4.2. Стационарные зажимные приспособления с механизированным приводом
- Рис, 3.44. Универсальный трехкулачковый самоцентрирующий патрон с пневмоприводом для сверлильного станка:
- 3.4.3. Поворотные приспособления
- 3.4.4. Многошпиндельные сверлильные головки
- 3.5. Приспособления для шлифовальных станков
- 3.5.1. Приспособления для центровых круглошлифовальных станков
- Формы центровых отверстий на заготовках (б):
- 3.5.2. Приспособления для внутришлифовальных станков
- 3.5.3. Приспособления для плоскошлифовальных станков
- 3.5.4. Приспособления для бесцентровых круглошлифовальных станков
- Врезного шлифования ступенчатых заготовок (б); ступенчатая заготовка (в)
- 3.6. Приспособления станков с чпу и обрабатывающих центров.
- 3.6.1. Особенности зажимных приспособлений и требования к ним.
- (А) и вертикально-фрезсрный (б) станки с чпу:
- 3.6.2. Эффективное применение приспособлений для станков с чпу.
- 3.6.3. Установка приспособлений на станки с чпу.
- 3.6.4. Конструкции элементов приспособлений для станков с чпу.
- 3.6.5. Типовые компоновки приспособления для обработки заготовок с четырех и пяти сторон.
- С поворотными прихватами:
- 3.6.6. Приспособления для закрепления осевого режущего инструмента
- 3.6.7. Приспособление для настройки инструмента вне станка.
- 3.7. Приспособления для агрегатных станков и автоматических линий
- Применяемая в приспособлениях агрегатных станков (а) и схема стола станка (б):
- Для приспособлений агрегатных ставков:
- Поверхностям приспособления:
- С поворотным барабаном (а) для обработки заготовки из трубы (б):
- 3.7.1. Кондукторные плиты
- Вращающейся втулки со шпонкой (б):
- 3.7.2. Стационарные приспособления для автоматических линий
- Ведущих мостов автомобилей, применяемого в автоматической линии:
- 3.7.3. Зажимные приспособления барабанных агрегатных станков
- Барабанного типа:
- 3.7.4. Приспособления, устанавливаемые на поворотных столах агрегатных станков
- С поворотным столом:
- 3.7.5. Приспособления-спутники
- Устройство для выверки заготовки-отливки в зажимном приспособлении спутника (г):
- Для агрегатного станка (автоматической линии):
- 3.8. Контрольные приспособления
- 3.8.1. Общие сведения
- 3.8.2. Основные элементы
- 3.9. Приспособления для инструмента
- 3.10. Автоматизация загрузки заготовок в зажимные приспособления
- 4. Проектирование специальных приспособлений
- 4.1. Исходные данные и задачи конструирования
- 4.2.Разработка конструкции
- 4.3. Экономическое сравнение вариантов приспособления
- 4.4. Автоматизированное проектирование приспособлений
- 4.5. Расчет точности станочных приспособлений
- 4.5.1. Термины, обозначения и определения размерных цепей
- 4.5.2. Задачи и способы расчета размерных цепей
- 4.5.3. Последовательность расчета размерной цепи при решении прямой задачи
- Сводная таблица
- Единицы допуска
- Квалитеты
- Значения допусков, мкм
- 4.5.4. Пример расчета на точность станочного приспособления
- 1 Ось отверстия в корпусе приспособления; 2 ось отверстия во втулке;
- 3 Ось сверла
- Экономическая точность механической обработки
- Допуски соосности и радиального биения, мкм
- 5. Пути развития станочных приспособлений
- 5.1. Автоматизированное проектирование приспособлений
- 5.2 Направления развития станочных приспособлений
- 1 − Базовый корпус; 2 − сменные наладки; 3 − заготовки
- Многоместное (б) и кондукторное с поворотной планшайбой