logo
Разработка технологической схемы очистки промышленных газов

2. Разработка вариантов схемы очистки газов и выбор наиболее рациональной схемы

На первом этапе проводим очистку от пыли. Медианный диаметр, равный 32 мкм, определяет использование тех или иных сухих механических аппаратов. Пылеосадительную камеру применять не целесообразно, так как она применяется при медианном диаметре от 40мкм. Следовательно, первым ставим циклон. Эти аппараты получили наибольшее распространение в промышленной практике, т.к. используемый в них способ разделения неоднородных пылегазовых потоков в центробежном поле более эффективен, чем гравитационное осаждение, поэтому они и применяются для отделения более мелких частиц пыли (до 5 мкм) [1, c.58]. При прохождении через циклон температура газового потока уменьшается до 115 єC, а степень очистки зц в данном аппарате находится, основываясь на информации о дисперсном составе пыли, указанном в таблице 1 исходных данных, по формуле [1,c. 53]:

где - фракционная эффективность, % (данные из таблицы 1);

- содержание фракций в газах, % (данные таблицы 1).

Тогда рассчитаем эффективность циклона:

Поскольку требуемая степень очистки пыли весьма значительна (99,96 %), а в ее состав входят частицы размером 0 - 5 мкм, не улавливаемые циклоном, и составляют 16 % от общего количества частиц, необходимо на завершающей стадии ее очистки использовать аппарат, который обеспечит улавливание таких мелких частиц. Электрофильтр не применить в данном случае мы можем вполне обоснованно: по значению удельного электрического сопротивления слоя пыли (УЭС) пыль относится к третий группе (пыли с УЭС = 1010…1013 Ом•см), т.к. в данном варианте значение

УЭС = 4•10 12 Ом•см при температуре 50 єC; А пыли с высоким УЭС наиболее трудно улавливаются в электрофильтре. Слой на осадительном электроде действует как изолятор, так как время его разрядки велико. Электростатические заряды, поступающие непрерывно с оседающей пылью, не отводятся на осадительный электрод, а создают напряжение на слое осевшей пыли, что приводит к нарушению работы электрофильтра.

Так электрофильтр применять не целесообразно, то применим тканевый рукавный фильтр с импульсной продувкой. В современном виде фильтрация обеспечивает улавливание самых разнообразных частиц размером от видимого до околомолекулярного. Фильтрация вне конкуренции, когда речь идет об обеспечении исключительно высокой эффективности улавливания очень мелких частиц ценой умеренных затрат. Фильтрованием принято называть процесс очистки газов от пыли путем пропускания их через пористые перегородки. При этом частицы пыли собираются на перегородке со стороны входа газа, а очищенный газ проходит через перегородки. В зависимости от фильтрующего материала фильтры могут быть тканевые, в которых используют не только ткани, но и нетканые материалы (войлок, фетр). Концентрация пыли 100г/м3.

Итак, на первом этапе проводим очистку от пыли с помощью выше перечисленных аппаратов, а именно: циклон и рукавный фильтр, а уловленная этими аппаратами пыль, имеющая экономическую заинтересованность с точки зрения сбыта ее за счет присутствия в ней олова и цинка, направляется на хранение на временный склад.

На втором этапе очистки газового потока будем проводить очистку от диоксида серы (SO2) и необходимо добиться степени очистки з (SO2) = 50 %, поскольку проводить очистку от диоксида азота будет более рационально и технико-экономически выгодно на последней стадии очистки газа, ведь выделяющееся при селективном каталитическом их восстановлении тепло можно использовать в различных целях производства. Для очистки газов от диоксида серы предложено большое количество хемосорбционных методов, однако на практике применяются лишь некоторые из них. Это связано с тем, что объемы отходящих газов велики, а концентрация в них диоксида серы мала, газы характеризуются высокой температурой. Однако при проведении очистки на предыдущих этапах мы понизили температуру до 90 єC и исключили влияние на очистку от диоксида серы пыли, поскольку она была уловлена. Так, абсорбция диоксида серы водой связана с большими затратами (в связи с низкой растворимостью SO2 в воде для очистки требуется большой ее расход в абсорберы с большим объемом) [1, c.101]; рекуперационные методы очистки с регенерацией хемосорбента также экономически затратные (например, магнезитовый метод: SO2 поглощают оксид-гидроксидом магния, в процессе хемосорбции образуют кристаллогидраты сульфита магния, который сушат, затем термически разлагают на SO2 - содержащий газ, который перерабатывают в серную кислоту, и оксид магния, который возвращают на абсорбцию; к недостаткам метода относят сложность технологической схемы и неполное разложение сульфита магния при регенерации; цинковый метод: абсорбентом служит суспензия оксида цинка, образующийся оксид серы в результате реакции SO2 с оксидом цинка и водой перерабатывают, оксид цинка возвращают на абсорбцию; недостатком метода является образование сульфита цинка, который экономически нецелесообразно подвергать регенерации, необходимо непрерывно выводить из системы и добавлять в нее эквивалентное количество оксида цинка; содовый метод: сущность этого метода заключается в промывке отходящих газов водными растворами кальцинированной соды: этот способ обеспечивает хорошую очистку отходящих газов от SO2 с одновременным получением товарной соли NaHSO3 и Na2SO3, однако он не нашел широкого применения ввиду ограниченного сбыта этих солей), поэтому целесообразно будет проводить очистку известковым методом, относящимся к нерекуперационным методам, достоинствами которого являются простая технологическая схема, низкие эксплуатационные затраты, доступность и дешевизна сорбента, возможность очистки газа без предварительного охлаждения [1, c.101]. Известковый метод обеспечивает практически полную очистку газов от SO2 (з (SO2) = 80 %), однако нам нужно добиться эффективности з (SO2) = 50 %, для чего последовательно устанавливаем два скруббера, орошаемых известковым молоком. При этом фактическая полная степень очистки от диоксида серы находится по формуле [1,c. 53]:

При очистке газа от диоксида серы параллельно завершается очистка от пыли и температура газового потока на выходе из скрубберов, орошаемых известковым молоком, понижается до 30 єC . Следует рассчитать суммарную степень очистки газов от пыли, достигаемую в выше указанных последовательно установленных аппаратах, по формуле [1,c. 53]:

Таким образом, приведенной последовательностью очистки от пыли легко достигается требуемая степень очистки 99,96%.

На третьем этапе будем проводить очистку газа от диоксида азота и необходимо будет достигнуть эффективность очистки, равную 99,2 %. Существующие методы очистки подразделяются на три группы: поглощение окислов азота жидкими сорбентами, поглощение окислов азота твердыми сорбентами и восстановление окислов азота до элементарного азота на катализаторе. Наиболее распространенным методом в нашей стране является очистка газов от окислов азота путем поглощения их растворами Na2CO3 и Са (ОН)2 , сравнительно реже -- NaOH и КОН.

Метод щелочной очистки требует больших капитальных затрат и эксплуатационных расходов, но главный его недостаток в том, что степень абсорбции окислов азота не превышает 60--75% и, таким образом, этот метод не обеспечивает санитарной нормы очистки газов. Полученные в процессе очистки щелока нуждаются в дальнейшей многостадийной переработке для получения из них твердых солей.

Метод поглощения окислов азота твердыми сорбентами -- силикагелем, алюмогелем, активированным углем и другими твердыми поглотителями -- не нашел промышленного применения из-за сложности, малой надежности и дороговизны.

Метод каталитического восстановления окислов азота начал применяться только в последние годы и пока является наиболее совершенным методом.

Каталитическое восстановление окислов азота. Тонкая очистка газов от окислов азота может быть достигнута методом каталитического восстановления окислов азота. Восстановление начинается при 149° С в случае применения водорода в качестве восстановителя и при 400° С -- в случае применения в качестве восстановителя метана. Восстановление окислов азота происходит при пропускании смеси газов, содержащих окислы азота с газом - восстановителем, над слоем катализатора. Выделяющееся в процессе реакции тепло используется либо для получения пара, либо в газовой турбине. В качестве восстановительного агента используются водород, метан и газы: природный, отходящие нефтяные и коксовый. Для осуществления процесса используются катализаторы различных типов.

Восстановление окислов азота возможно и без катализаторов при использовании высокотемпературного восстановительного пламени, при этом газы должны быть нагреты до температуры 950--1200° С. В качестве восстановителей могут быть использованы природный газ, водород и другие горючие вещества.

Таким образом, на мой взгляд, наиболее целесообразно в данном случае проводить очистку от диоксида азота методом селективного каталитического восстановления. Основан на реакции восстановления оксида азота аммиаком на поверхности гетерогенного катализатора в присутствии кислорода. Селективное каталитическое восстановление происходит при температурах от 180°С до 360°С с выделением больших количеств тепла, температура конвертируемых газов увеличивается в зоне катализа на 10-20°. Образующееся тепло рационально будет направить в теплообменник для дальнейшего его выгодного с экономической точки зрения использования, на выходе из которого температура газа составит 55 °С (так как точка росы составляет 35 ° С и оборудование размещаем в помещении и во избежание залипания газа температура на выходе должна превышать это значение точки росы). Этим способом очистки достигается требуемая степень очистки зNO2 = 99,2%.

3. Выбор пылегазоочистного оборудования (с учетом объема очищаемых газов) и составление принципиальной схемы очистки газов

При выборе пылегазоочистного оборудования будем руководствоваться расчетным значением объема очищаемых газов, рассчитанных в предыдущем пункте, и следующей справочной литературой: Внуков А. К. «Защита атмосферы от выбросов энергообъектов» - при выборе марки циклона. Так, циклон выбираем по занимаемому очищаемыми газами объему, равному Vц = 3, батарейный ЦБР-У-400 [4, c.165] и фильтр рукавный с импульсной продувкой рукавов ФРИ-С (Схема, принцип работы данных аппаратов подробно будут описаны в следующем разделе).

Составляем принципиальную технологическую схему (рис.1) очистки газов согласно выше описанным положениям и с учетом типа выбранного газоочистного оборудования.

Рис.1.Принципиальная технологическая схема очистки промышленных газов