Производство алюминия, цветных металлов 3

контрольная работа

4.1 Основные направления, повышения эффективности производства

Повышение эффективности переработки лома и отходов алюминия

Анализ сложившейся в настоящее время в странах СНГ ситуации с производством вторичных алюминиевых сплавов показывает существенное отставание от западноевропейских заводов по переплавке алюминиевого лома и отходов.

На фоне складывающейся в России неблагоприятной ситуации с заготовкой лома и отходов алюминия, а также следование сложившейся за долгие годы привычке крупных литейных предприятий использовать сплавы, приготовленные из первичных металлов, для производителей вторичных алюминиевых сплавов наступают нелёгкие времена.

Между тем, производство вторичного алюминия в силу меньших энергетических затрат и существенно меньших чем при производстве первичного металла выбросов вредных веществ в окружающую природную среду, будет возрастать. По прогнозам доля вторичного алюминия в общем потреблении к 2030 году может возрасти до 22 - 24 млн. т. в год.

В связи с этим, сегодня вновь становятся актуальными следующие направления в развитии производства вторичных алюминиевых сплавов:

1. Использование рациональной для каждого предприятия схемы обращения с алюминиевыми шлаками.

2. Совершенствование технологии подготовки алюминиевого лома к плавке.

3. Снижение затрат на рафинирование от магния при производстве сплавов с Mg < 0,1 % с одновременным решением вопросов снижения выбросов солей в окружающую среду.

4.Совершенствование технологии переработки ломов на высококачественные сплавы.

Снижение потерь металла со шлаками определяются причинами шлакообразования при плавке алюминиевого лома:

1. наличием загрязнений на амортизационном ломе, его влажностью и степенью коррозии, скорость нагрева лома в печи во время плавки;

2. теплопередачей в слой шихты в пространстве печи;

3. наличием в составе шихты фрагментов лома с повышенным содержанием магния.

МЕРОПРИЯТИЯ ПО ПОДГОТОВКЕ И ПЛАВКЕ ЛОМОВ

Снижение выхода шлака и потерь металла с ними предопределяют следующие мероприятия по подготовке шихты к плавке, а также и по проведению самого процесса плавления лома в печи.

К ним относятся в первую очередь применение технологии дробления, сепарации (пневматической и магнитной) позволяющей:

-во-первых, очистить лом от механических загрязнений и окислов;

-во-вторых, высушить лом за счёт тепла выделяемого при дроблении.

Реализация этих рекомендаций позволит сократить объём шлаков за счёт удаления засора (балласта) перед плавкой, и, как следствие, сократить потери металла с ним.

Из практики известно, что плавка предварительно очищенного лома позволяет сократить потери металла как минимум на половину величины удалённого при дроблении механического засора и окислов от коррозии лома.

Проведённые ещё в начале 80-х годов промышленные исследования по плавке дробленого лома на дробилке фирмы «Линдеман» (Подольский ВЦМ) показали, что извлечение металла повышается на 1,5% при плавке в отражательных печах, а плавка лома с использованием флюсов позволяет повысить извлечение металла в сплавы ещё на 2% .

Расчёты показывают, что при производительности завода ~ 2000т. в месяц, плавка дроблёного лома позволит получить дополнительно, по меньшей мере, 35 тонн алюминиевых сплавов, а использование предварительно высушенных флюсов при плавке (расход 5-7% от веса сплава) позволит получить дополнительно ещё такое же количество металла.

Для реализации вышеописанных предложений необходимо, как минимум, приобретение установки дробления и сепарации алюминиевого лома с последующим её использованием вкупе с ручной предварительной сортировкой ломов по группам сплавов на сортировочном конвейере с грохочением для удаления землистого засора.

ПЕРЕРАБОТКА ШЛАКОВ

В настоящее время на заводах использующих пламенную отражательную плавку образуется порядка 14-16% от веса перерабатываемого лома шлаков и выгребов. На практике в шлаках, после ручной выборки корольков содержание алюминия составляет не более 20%. При относительно малых объёмах шлакообразования (500-3000 тонн в год), приобретение установки глубокой переработки шлаков стоимостью 300-400 тыс. $ вряд ли будет экономически оправданным.

Для условий малых и средних предприятий оптимально использование установок горячего выдавливания металла из шлака, которые позволит извлекать из шлаков до 80% содержащегося в них жидкого алюминия и решит вопрос «выгорания металла» в процессе его остывания, существенно снизит «пыление» шлака при хранении и транспортировке.

Например, использование горячего прессования шлаков для объёма образования -3000 т/год, позволит получить дополнительно:

3000 х 0,25 х 0,8 х 0,95 = 570 т. в год металла;

где: 0,25 - содержание металла в шлаке;

0,8 - извлечение при прессовании;

0,95 - извлечение при переплаве выжимка.

Остальное количество металла может быть реализовано заводам, специализирующимся на переработке алюминиевых шлаков.

Расчётный срок окупаемости установки горячего прессования шлаков составит 3 - 5 месяцев.

Можно также утверждать, что использование горячего прессования шлаков позволит сократить ручной труд и снизить потери металла при остывании шлаков в шлаковницах и на складе.

Переработка окисленной части шлака должно осуществляться по стандартной технологии: дробление - сепарация с выделением королькового металла в концентрат с содержанием металла не менее 50 %.

В последние годы некоторые предприятия используют вращающиеся наклоняющиеся печи грушевидной формы с петлевым факелом для переработки концентрата от обогащения алюминиевых шлаков. Технология предполагает низкий расход солей (5-7%), а, следовательно, и малые потери металла со шлаками, меньший унос хлоридов с отходящими газами. Однако практика показывает, что плавка шлаков во вращающихся поворотных печах, в отличие от плавки кускового лома, не даёт желаемых результатов. Причина, на наш взгляд, заключается в том, что регулирование технологического процесса осуществляется на грани «искусства» во-первых, из-за высокой летучести хлоридов (когда они испарятся, в слое шлака могут пойти металло-термические реакции), во-вторых, из-за измельчения расплавленных корольков металла слоем окислов.

Теоретические и экспериментальные исследования процессов плавки алюминиевого лома показывают, что для снижения потерь металла за счёт окисления плавка должна протекать в режимах максимально возможного теплового потока от источника тепла к приёмнику. При плавке мелкого сыпучего шлака или шлакового концентрата этого можно достичь путем подачи тепла в тонкий слой материала, а для резкого сокращения окисляемой поверхности металла (единичных капель металла) необходимо создать условия для их слияния: «мягкое» перемешивание в присутствии поверхностно активных добавок - расплавленных хлоридов и фторидов.

Эти условия могут быть созданы в условиях поворотной и вращающейся противоточной цилиндрической печи.

Плавка осуществляется с изменением наклона печи от 0 до 5 - 7 град. и малом числе оборотов при высоте слоя материала 100 - 200 мм. Испытания по плавке шлаков показали, что при расходе солей не более 7% извлечение в жидкий металл составляет до 95% от исходного содержания. Аналогичные результаты получены и при переплаве цинковой изгари и цинковых шлаков, проблема извлечения металла из которых остаётся актуальной до сих пор. В каждом конкретном случае и для каждого конкретного металлизированного сырья и полупродуктов необходимо подбирать количество флюсов, температуру процесса и скорость перемещения нагреваемых сырья и продуктов плавки.

РАФИНИРОВАНИЕ ВТОРИЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ

Одним из направлений повышения рентабельности производства вторичных алюминиевых сплавов является расширение номенклатуры и выпуск высокомарочных сплавов по мировым стандартам. В условиях значительного повышения цен на амортизационный лом и всё возрастающих цен на энергоносители - это единственный способ удержаться на мировом рынке металлов.

В настоящее время для удаления из сплавов избыточного магния используется, в основном, рафинирующие флюсы на основе хлоридов и фторидов калия, натрия и алюминия. Затраты на приобретение флюсов на некоторых, производящих высокомарочные литейные сплавы предприятиях, существенны. В связи с этим повышение эффективности их использования актуальна, как с точки зрения снижения себестоимости сплавов, так и снижения вредных выбросов в окружающую среду. На практике, при существующих технологиях флюсования, расход активного флюса (смесь криолита, фтористого алюминия и сильвинита) обычно составляет 7-10 кг на 1 кг магния, что в 2-3 раза больше теоретически необходимого. Повышенный расход флюсов увеличивает выход шлаков рафинирования, и, как следствие, потери металла с ним. Так, например, на заводе, использующем до 30 т/мес. флюса «ЭКОРАФ 3» из-за двойного его перерасхода образуется порядка 50 т. шлака дополнительно. В этот шлак будет, увлекается: 50 х 40% = 20 т алюминия, а теряется в связи с неполнотой извлечения и окисления порядка 8 т. металла.

Приведенные данные показывают, насколько важен вопрос оптимизации технологии рафинирования как с точки зрения сокращения расхода флюсов до теоретически необходимого, так и связанного с этим снижения выбросов хлоридов и фторидов в окружающую среду.

Наиболее приемлемым вариантом в этом случае был бы вариант поиска более дешевого флюса с наименьшим (близким к стехиометрическому) расходом.

Кроме того, технология должна предусматривать минимизацию времени рафинирования, которое в настоящее время составляет 45-90 минут, и при более глубоком рафинировании от магния (до 0,1%), может, существенно возрасти.

В настоящее время имеются технологии плавки и рафинирования вторичного алюминия позволяющие сократить потери со шлаками, снизить расход флюсов и времени рафинирования, снизить выбросы галогенов в окружающую среду, в т.ч. и их залповые выбросы. Вопрос заключается в правильном их применении на основе известных представлений в области теории металлургических процессов и теории печей и гидродинамики расплавов при искусственном их перемешивании.

Для доведения качества сплавов до уровней мировых стандартов по содержанию водорода и неметаллических включений на заводах необходимо внедрить систему рафинирования металла в процессе его разлива на конвейер, включающий продувку расплава азотом с последующей фильтрацией через стеклосетку или пенокерамический фильтр. Инвестиции на создание и освоение такой установки составят прядка 10 тыс. $, эксплуатационные затраты - около 1,2 $ на тонну сплава. Такая установка с положительным эффектом прошла широкомасштабные промышленные испытания на Ташкентском и Харьковском заводах Вторцветмет ещё в 80-х годах.

ИНТЕНСИФИКАЦИЯ ТЕХНОЛОГИИ ПЛАВКИ АЛЮМИНИЕВОГО ЛОМА В ОТРАЖАТЕЛЬНЫХ ПЕЧАХ ЗАВОДА

Анализ условий теплопередачи, реализуемой в топливных печах отражательного типа показывает, что теплопередача в них осуществляется, в основном, за счёт лучистого теплообмена (радиацией) и зависит от нескольких факторов: коэффициента лучеиспускания от газа и кладки на материал (шихта, ванна расплава), разности температур между теплоотдающими и тепловоспринимающими поверхностями в четвертой степени, величине этих поверхностей и времени воздействия. Поскольку все эти величины, за исключением температуры теплоотдающих поверхностей, практически постоянны, то существенно повысить теплоотдачу можно только повышением температуры в печном пространстве. Повышение теплоотдачи естественно приведет к повышению скорости плавки шихты.

При плавке алюминия скорость нагрева шихты во многом определяет и количество окислившегося в процессе плавки металла.

При переходе с установившейся на заводах технологии плавки на плавку с «горячим ходом», (до 1200С под сводом плавильной печи) извлечения можно повысить ещё, как минимум на 1,5%.

Однако в существующих на заводах отражательных печах с горелками отечественного производства, работающими на холодном или подогретом до 200С воздухе достижение такой температуры в плавильном пространстве потребует повышение расхода топлива, как минимум на 25-30%, что повлечёт за собой увеличение объёма дымовых газов и их температуры. Существующие системы дымоотвода и газоочистки вряд ли справятся с новыми параметрами отходящих газов.

В сложившейся ситуации напрашивается два технических решения:

- применение системы регенерации тепла дымовых газов с использованием горелок работающих на подогретом до 900С воздухе.

Система позволяет сократить на 25-30% расход топлива и снизить температуру отходящих дымовых газов до 200 - 260С.

Последний факт существенно облегчит работу системы пылеулавливания и значительно сократит выбросы вредных веществ в окружающую среду.

- Использование обогащённого кислородом дутья (до30% О2), что позволит существенно повысить температуру факела при одновременном снижении количества отходящих газов, уменьшение количества воздуха на их разбавление для снижения температуры перед рукавными фильтрами. В настоящее время, в связи с появлением высокопроизводительных кислородных станций на молекулярных ситах, либо использования жидкого кислорода это решение становится реальностью.

ВЫВОДЫ

В условиях всё возрастающего дефицита сырья для выплавки высококачественных вторичных алюминиевых сплавов внедрение рациональных схем подготовки и металлургической переработки лома алюминия, повышающей извлечение и качество металла является актуальной задачей.

К наиболее приемлемым, с точки зрения минимизации инвестиций, являются следующие мероприятия:

- использование рациональных схем переработки алюминиевых шлаков, позволяющих возвращать в производство увлеченный при выгребе шлака из печи металл и сокращающих окисление металла при хранении шлаков на складе;

- приобретение установок дробления и сепарации алюминиевого лома;

- внедрение передовых технологий рафинирования алюминиевых сплавов с цель сокращения расходов активных флюсов и повышения качества металлов по содержанию неметаллических включений и водорода;

- применение современных систем регенерации тепла отходящих газов с цель подогрева воздуха поступающего на горение до 900С с одновременным снижением температуры отходящих газов до 200 - 260С;

- использование дутья обогащенного кислородом для повышения теплоотдачи факела в плавильных печах.

Делись добром ;)