Аэродинамика циклонной камеры

курсовая работа

1. Общая картина движения газа в циклонной камере

Рис. 1. Схематический чертеж циклонной камеры и основные обозначения; 1 - ядро потока; 2 - периферийная (пристенная) зона; 3 - приторцевал зона

Циклонная камера (рис. 1) представляет собой цилиндр, тангенциально к внутренней поверхности которого вводится газ или жидкость. Число а и местоположение Хвх вводов (шлицев или сопел) может быть различным и определяется технологическим назначением циклонного аппарата. Основными относительными характеристиками (их обозначения приведены на рис. 1) циклонной камеры, кроме отмеченных, являются:

- суммарная площадь входа ,

- диаметр выходного отверстия

- длина рабочего объема ,

- высота шлицев (сопел) ,

- местоположение входных шлицев ,

- (координата отсчитывается от глухого торца рабочего объема камеры),

- шероховатость поверхности рабочего объема.

Вывод газов из рабочего объема циклонной камеры, как правило, осуществляется через соосное с ним выходное отверстие в одном из торцов. Для обычных циклонных камер характерна диафрагмированность выхода и сравнительно небольшая относительная длина (= 0,5 ч 2,5).

Поле скоростей потока в циклонных камерах отличается сложностью и пространственностью. В любой точке поля сектор скорости можно разделить на три составляющие (компоненты): тангенциальную щц (вращательную), щх осевую (продольную) и радиальную щz (рис. 1). В общем случае соотношение между этими компонентами может быть различным по величине в зависимости от местоположения рассматриваемой точки поля скоростей и геометрии циклонной камеры. По характеру изменения компонент скорости потока весь рабочий объем циклонной камеры (см. рис. 1) можно разделить на три основные области: осесимметричное ядро потока, приторцевые зоны течения и периферийную пристенную зону.

Ядро потока занимает основную часть рабочего объема камеры. Внешней границей ядра потока является цилиндрическая поверхность, радиус которой rя может быть найден из условия максимума момента количества движения. С торцевых поверхностей ядро потока ограничено зоной интенсивных радиальных течений, где наблюдается падение вращательной составляющей скорости и значительное повышение радиальной компоненты. В пределах ядра потока тангенциальная (вращательная) составляющая имеет наибольшую из всех трех компонент величину. В соответствии с характером ее распределения по радиусу (рис. 2) можно выделить две зоны: зону возрастания скорости при уменьшении радиуса (квазипотенциальную зону) и зону ее падения по мере приближения к центру камеры (зону квазитвердого вращения). Зоны разделены сравнительно небольшим по радиальной протяженности переходным участком. Размеры зон возрастания и падения тангенциальной составляющей, так же как протяженность переходного участка и общий уровень вращательной скорости, определяются геометрией циклонной камеры.

Рис. 2. Распределение вращательной составляющей скорости, статического и полного давлений в циклонной камере

При двухстороннем и более вводе газа течение в ядре практически осесимметрично. Аэродинамическая ось потока совпадает с осью камеры. Вращательная составляющая скорости в ядре потока значительно превышает другие компоненты скорости, поэтому основным видом движения считают вращательное. С этой точки зрения, в первом приближении, движение газа в ядре можно считать плоским и отнести к категории равномерных осесимметричных относительно оси вращения или круговых. Из курса физики известно, что при равномерном движении по окружности радиуса r равнодействующая сил dF, действующих на элемент жидкости, должна быть равна по модулю

(1)

и направлена к центру окружности.

В уравнении (1) - линейная (тангенциальная, вращательная) скорость движения элемента; m - масса элемента.

Только когда равнодействующая сила сообщает элементу необходимое центростремительное ускорение j=/r, он движется равномерно по окружности. Эту равнодействующую называют центростремительной силой. Если исключить из рассмотрения вследствие их относительной малости силы трения, обусловленные вязкостью, и условие равновесия рассматривать применительно к единице объема среды, то можно считать, что равнодействующей (центростремительной) силой в ядре циклонного потока будет являться радиальный градиент давления [13]. Соответственно условие существования кругового течения, или условие радиального равновесия потока, в рассматриваемом случае будет определяться уравнением

. (2)

Статистическое и полное давления максимальны на внешней границе ядра потока и падают по направлению от стенки к оси камеры. В приосевой области при определенных условиях статистическое и полное давления потока могут быть ниже атмосферного (см. рис. 2).

В периферийной (пристенной) зоне, так же как и в ядре, вращательная составляющая является наибольшей из всех компонент. Профиль в этой области не осесимметричен и непрерывно перестраивается по мере продвижения потока у вогнутой поверхности рабочего объема. Начальное же распределение - распределение на выходе из входного шлица/сопла/ - зависит от характера течения потока/профиля скорости/ внутри и вне его.

Сложность течения определяется тем, что выходящая струя в рабочем объеме взаимодействует сразу и со спутным, вращающимся относительно оси камеры потоком, и с вогнутой цилиндрической стенкой камеры. Взаимодействие струи со стенкой приводит к закручиванию потока. Частицы среды вблизи стенки начинают двигаться по спиральным траекториям, причем направление вектора их скорости в пристенном слое струи определяется совокупным влиянием, например, положения рассматриваемого канала относительно других каналов и торцевых поверхностей рабочего объема, интенсивностью торцевых перетечек, которые в свою очередь зависят практически от всех геометрических характеристик камеры.

Кривая распределения статического давления по радиусу в периферийной зоне течения по характеру является продолжением соответствующего распределения в ядре потока.

Особенности течения потока в приторцевых областях циклонных камер связаны с подтормаживающим действием торцевых поверхностей. Вблизи торцевых поверхностей вращательная составляющая скорости уменьшается, и появляется интенсивное радиальное течение, направленное к центру камеры со скоростью, которая обуславливает появление сил трения, компенсирующих возникшее нарушение динамического равновесия в рассматриваемой области. Сложность картины дополняется взаимодействием возникшего течения с ядром потока. Статическое давление поперек этой области практически не изменяется на всех радиусах.

Условия стока, неравномерность распределения вращательных скоростей потока по длине рабочего объема (и первую очередь в периферийной и приторцевых областях течения), обусловленная геометрией камеры и трением потока о стенки, а также имеющееся в некоторых случаях разрежение в приосевой зоне определяют довольно сложное поле осевых скоростей в циклонных устройствах. На рис.3 приведены условные распределения осевой компоненты скорости по радиусу в рабочем объеме и соответствующие им схемы осевых потоков.

За положительное направление осевой скорости здесь и далее принимается направление к выходу из камеры, за отрицательное - направление к глухому торцу. На рис. 3 видно, что входящий в камеру поток разделяется на два, один из которых направляется к выходному торцу, а другой - к глухому.

Рис. 3. Распределение щх и схемы осевых движений потока в циклонной камере: 1 - периферийннй прямой вихрь;2 - кольцевой обратный вихрь; 3 - выходной вихрь;4 - периферийный обратный вихрь; 5 - осевой обратный вихрь

Основная часть массы газа потоков интенсивными радиальными перетечками переносится к центральным областям рабочего объема. Вблизи приосевой зоны от глухого торца поток газа направляется к выходному отверстию, к нему в приторцевой области у выходного отверстия присоединяется часть газа, переносимая радиальным течением у выходного торца. Этот радиальный поток, взаимодействуя с выходным, частично ответвляется, образуя небольшое кольцевое обратное течение. В центральной области рабочего существует обратное течение газов. Оно появляется в результате имеющегося здесь разрежения и подсоса газов и зарождается вне рабочего объема камеры. Проникнув внутрь камеры на определенную глубину, массы газа, подсасываемые извне, присоединяются к выходному течению. Вращательное движение центрального обратного потока, в отличие от всех других вышерассмотренных, является индуцированным.

Размеры, радиальная протяженность и мощность рассмотренных закрученных осевых потоков могут быть различными и зависят от геометрических характеристик циклонной камеры.

Безусловно, приведенная схема осевых течений потока является приближенной, хотя и допускает существование циркуляционных зон как внутри рабочего объема, так и в пристенном слое между входными каналами, в углах рабочего объема между торцевыми и боковой поверхностями. Пристенные потоки называют периферийными прямым и обратным вихрями, выходной поток - выходным вихрем, кольцевое обратное течение - кольцевым обратный вихрем, центральный обратный поток - центральным обратным вихрем.

Важная роль в аэродинамике циклонных камер принадлежит весьма интенсивному турбулентному обмену.

С точки зрения общих аэродинамических характеристик циклонных камер, основным видом движения газа, как уже отмечалось, следует считать вращательное. Главной характеристикой вращательного движения в циклонной камере является максимальная вращательная скорость потока (см. рис. 2). Она удачно характеризует общий (эффективный) уровень вращательного движения газа в рабочем объеме. При струйном представлении циклонного потока является скоростью потока на внешней границе струйного пограничного слоя, обращенного к оси камеры. Обычно в аэродинамических расчетах чаще используют не абсолютное значение , а относительное ( - средняя скорость потока в шлицах или соплах).

Второй скоростной характеристикой ядра потока в циклонной камере является вращательная скорость на его внешней границе . Эта скорость является интегральной характеристикой аэродинамических процессов, связанных с истечением газа из шлицев, распространением его струй у боковой поверхности камеры, взаимодействием пристенной зоны течения с ядром и приторцевыми потоками. Обе скоростные характеристики связаны между собой коэффициентом крутки в ядре потока:

(3)

Радиальные размеры характерных зон циклонного потока определяются безразмерными радиуса, ?= . Особо важное значение в аэродинамических расчетах циклонных камер имеют безразмерные радиусы, характеризующие положение максимума вращательной скорости потока , внешней границы осесимметричного ядра , нулевого значения статического давления (см. рис. 2). Общее сопротивление циклонной камеры оценивается по суммарному коэффициенту сопротивления

где - перепад полного давления в камере, разность величин полных давлений в шлицах и за выходным отверстием рабочего объема; - плотность потока на входе в камеру. Cуммарный коэффициент сопротивления вида

,

где - плотность потока на радиусе .

С помощью коэффициента можно определить затраты энергии на создание определенного уровня вращательных скоростей в устройстве. Фактически он определяет аэродинамическую эффективность циклонной камеры.

Влияние основных конструктивных и режимных характеристик на аэродинамику циклонной камеры.

Из отмеченных выше геометрических характеристик особенно сильное влияние на аэродинамику циклонной камеры оказывает диаметр выходного отверстия. Уменьшение приводит к росту величины , значения статистического давления на боковой поверхности камеры Рс.ст., уменьшению характерного радиуса и других характеристик радиусов ядра потока. При этом наблюдается существенная перестройка профилей и . В то же время влияние параметра на поток в пристенной зоне практически мало существенно.

Увеличение относительной суммарной площади входа циклонной камеры приводит к повышению уровня вращательных и осевых скоростей, статистического давления и смещению характерных радиусов в ядре потока в приосевую область, а границы ядра потока - в периферийную область рабочего объема. С уменьшением распределения вращательной скорости и давлений приобретают более пологий характер.

Относительная высота шлицев основное влияние оказывает на поток в пристенной зоне. С увеличением уменьшаются потери на расширение струи и вихреобразование у кромок шлицев, поэтому возрастает уровень во всей пристенной зоне течения, в том числе и величина . Радиальная протяженность периферийной зоны несколько увеличивается.

Относительное расположение входных шлицев хвх, практически не оказывая влияния на вращательное движение потока и слабо влияя на сопротивление камеры, коренным образом изменяет поле осевых потоков на периферии рабочего объема.

Распределенность шлицев по периметру камеры (увеличение а) способствует повышению осевой симметрии потока в ядре и равномерности распределения скоростей в периферийной зоне. При этом изменяются условия взаимодействия выходящих из шлицев струй с ранее введенными в рабочий объем и уже вращающимися в нем газами (следовательно, изменяются входные потери), протяженность их активного действия, влияние особенностей формирования потока и потерь во входных каналах.

Относительная длина камеры оказывает влияние, как на структуру, так и на общие аэродинамические характеристики потока. При > 2 и двухстороннем локальном вводе в ядре поток практически осесимметричен и распределения (при ·102 ? 3·10-2) можно считать неизменными по его длине. При < 2 распределение начинает существенно зависеть от продольной координаты. Увеличение приводит к значительному уменьшении, , , и суммарного сопротивления камеры. Существенно зависит от и поле осевых скоростей. При росте несколько увеличивается радиальная протяженность пристенной зоны течения.

Повышение шероховатости поверхности рабочего объема циклонной камеры приводит к снижению уровня вращательных скоростей, смещении максимума по направлению к периферии, уменьшению сопротивления камеры. Профиль под влиянием деформируется. Повышениеприводит к некоторой перестройке поля осевых скоростей, особенно в центре рабочего объема камеры. С ростом может быть ликвидирован осевой обратный ток, увеличивается радиальная протяженность и уровень максимальной осевой скорости выходного вихря.

Сопротивление циклонных камер и потери в них главным образам определяются вращательным движением потока, причем доля потерь на трение потока о стенки рабочего объёма, а также выходного и входных каналов в общей величине потерь для гладкостенных камер сравнительно невелика и возрастает с увеличением относительной шероховатости поверхности рабочего объема и каналов. Однако даже в гладкостенных камерах трение потока о стенки (при сравнительно небольших потерях непосредственно на трение) оказывает влияние на уровень вращательных скоростей в рабочем объеме, следовательно, на величину затрат на достижение определенного уровня крутки и величины входной и выходной составляющих суммарного коэффициента сопротивления. В гладкостенных камерах, а такие в шероховатых, в которых толщина ламинарного подслоя на стенках рабочего объема превышает величину бугорков шероховатости (шероховатая камера является гидродинамически гладкой), увеличение входного числа Рейнольдса

, (4)

( - коэффициент кинематической вязкости потока при входных условиях) или расхода газа через камеру приводит к снижению коэффициента трения и, следовательно, к снижению тормозящего действия внутренней поверхности рабочего объема. Повышение уровня вращательных скоростей с увеличением Reвх приводит и к росту о (рис. 4).

Рис. 4. Зависимость о = о (Reвх) при различной относительной шероховатости рабочего объема камеры: = 0,4; = 1.57; =10,205•

В области турбулентного режима интенсивность зависимости суммарного коэффициента сопротивления от Reвх, убывает с его увеличением. Когда в шероховатых циклонных камерах бугорки шероховатости значительно выходят за пределы ламинарного подслоя, тормозящее действие стенок будет определяться сопротивлением формы бугорков - сопротивлением плохо обтекаемых выступов шероховатости.

Поскольку сопротивление формы не зависит от числа Рейнольдса, то и сопротивление циклонной камеры в этом случае не зависит от Reвx. Течение потока становится автомодельным. Как и при течении в трубах, между двумя рассмотренными предельными режимами и в циклонных камерах существует промежуточный режим, в котором толщина ламинарного подслоя соизмерима с высотой выступов шероховатости и о зависит от и Reвx. Ранее уже отмечалось, что влияние трения потока о стенки камеры главным образом проявляется через изменение уровня вращательных скоростей и определяемых им величиной затрат энергии (напора) на достижение определенного уровня и потерь на выходе из рабочего объема.

Рост коэффициента трения приводит и снижению уровня вращательных скоростей и суммарного коэффициента сопротивления камеры, а уменьшение, наоборот, - к повышению уровня и соответственно о. Поэтому характер изменения суммарного коэффициента сопротивления циклонных камер от числа Reвх оказывается противоположным изменению коэффициента сопротивления трения. В общем изменение суммарного коэффициента сопротивления камеры с увеличением числа Reвх можно представить следующим образом: при ламинарном режиме течения, если он возможен, о, вероятно, будет увеличиваться и достигнет максимума при критическом значении числа Рейнольдса, в переходном режиме о убывает, при турбулентном промежуточном режиме, в отличие от двух предыдущих, характер изменения о начинает существенно меняться от относительной шероховатости поверхности рабочего объема, и, в зависимости от величины , может иметь место и падение, и увеличение о; в режиме развитой шероховатости суммарный коэффициент сопротивления не меняется.

Распределения не зависят от величины Reвх. В гладко-стенных камерах возрастает с увеличением Reвх. Зависимость максимальной вращательной скорости от числа Reвх практически определяется лишь изменением величины вращательной скорости на границе ядра потока.

Для шероховатых циклонных камер в наиболее целесообразном и часто встречающемся в практике диапазоне чисел Рейнольдса (Reвх >2·105) режим течения можно считать автомодельным.

Загрузка объема циклонной камеры различного рода вставками не вызывает коренных изменений в картине распределения скоростей. В то же время она оказывает влияние практически на все аэродинамические характеристики ядра потока.

Делись добром ;)