Аппаратурно-программное обеспечение вольтамперометрического определения ионов металлов в отработанных электролитах и промышленных водах гальванических производств

реферат

1.1 Виды вольтамперометрического анализа

вольтамперометрический анализ инверсионный ион

Полярография. Вольтамперометрию с использованием капающих электродов, потенциал которых меняется медленно и линейно, называют полярографией (метод предложен Я. Гейровским в 1922). Электродами сравнения служат обычно электроды второго рода, например каломельный или хлоросеребряный. Кривые зависимости I=f(E) или I =f(U) (вольтамперограммы) регистрируют специальными приборами - полярографами разных конструкций.

Вольтамперограммы, полученные с помощью вращающегося или капающего электрода при монотонном изменении (линейной развертке) напряжения, имеют вид, схематически представленный на рисунке. Участок увеличения тока называют волной. Волны могут быть анодными, если электроактивное вещество окисляется, или катодными, если оно восстанавливается. Когда в растворе присутствуют окисленная (Ох) и восстановленная (Red) формы вещества, достаточно быстро (обратимо) реагирующие на микроэлектроде, на вольтамперограмме наблюдается непрерывная катодно-анодная волна, пересекающая ось абсцисс при потенциале,соответствующем окислительно-восстановительному потенциалу системы Ox/Red в данной среде. Если электрохимическая реакция на микроэлектроде медленная (необратимая), на вольтамперограмме наблюдаются анодная волна окисления восстановленной формы вещества и катодная волна восстановления окисленной формы (при более отрицательном потенциале). Образование площадки предельного тока на вольтамперограмме связано либо с ограниченной скоростью массопереноса электроактивного вещества к поверхности электрода путем конвективной диффузии (предельный диффузионный ток, Id), либо с ограниченной скоростью образования электроактивного вещества из определяемого компонента в растворе. Такой ток называют предельным кинетическим, а его сила пропорциональна концентрации этого компонента [5].

Рисунок 1.1 - Вольтамперограмма, получаемая с помощью вращающегося дискового электрода.

Циклическая вольтамперометрия (вольтамперометрия с относительно быстрой треугольной разверткой потенциала) позволяет изучать кинетику и механизм электродных процессов путем наблюдения на экране осциллографич. трубки с послесвечением одновременно вольтамперограмм с анодной и катодной разверткой потенциала, отражающих, в частности, и электрохимическая реакции продуктов электролиза [6].

Нижняя граница определяемых концентраций Сн в методах вольтамперометрии с линейной разверткой потенциала составляет 10-5-10-6 М. Для ее снижения до 10-7-10-8 М используют усовершенствованные инструментальные варианты - переменно-токовую и дифференциальную импульсную вольтамперометрию.

В первом из этих вариантов на постоянную составляющую напряжения поляризации налагают переменную составляющую небольшой амплитуды синусоидальной, прямоугольной (квадратноволновая вольтамперометрия), трапециевидной или треугольной формы с частотой обычно в интервале 20-225 Гц. Во втором варианте на постоянную составляющую напряжения поляризации налагают импульсы напряжения одинаковой величины (2-100 мВ) длительностью 4-80 мс с частотой, равной частоте капания ртутного капающего электрода, или с частотой 0,3-1,0 Гц при использовании стационарных электродов. В обоих вариантах регистрируют зависимость от U или Е переменной составляющей тока с фазовой или временной селекцией. Вольтамперограммы при этом имеют вид первой производной обычной вольтамперометрической волны. Высота пика на них пропорциональна концентрации электроактивного вещества, а потенциал пика служит для идентификации этого вещества по справочным данным.

Пики различных электроактивных веществ, как правило, лучше разрешаются, чем соответствующие вольтамперометрические волны, причем высота пика в случае необратимой электрохимических реакции в 5-20 раз меньше высоты пика в случае обратимой реакции, что также обусловливает повышенную разрешающую способность этих вариантов вольтамперометрии Например, необратимо восстанавливающийся кислород практически не мешает определению многих электроактивных веществ методом переменно-токовой вольтамперометрии Пики на переменно-токовых вольтамперограммах отражают не только электрохимических реакции электроактивных веществ, но и процессы адсорбции - десорбции неэлектроактивных веществ на поверхности электрода (пики нефарадеевского адмиттанса, устаревшее - тенсамметрические пики).

Для всех вариантов вольтамперометрии используют способ снижения Сн, основанный на предварительном электрохимическом, адсорбционном или химическом накоплении определяемого компонента раствора на поверхности или в объеме стационарного микроэлектрода, с последующей регистрацией вольтамперограммы, отражающей электрохимическую реакцию продукта накопления. Эту разновидность вольтамперометрия называют инверсионной (устаревшее название инверсионной вольтамперометрии с накоплением на стационарном ртутном микроэлектроде - амальгамная полярография с накоплением). В инверсионной вольтамперометрии с предварительным накоплением Сндостигает 10-9-10-11 М. Минимальные значения Сн получают, используя тонкопленочные ртутные индикаторные электроды, в том числе ртутно-графитовые, состоящие из мельчайших капелек ртути, электролитически выделенных на подложку из специально обработанного графита.

Между анодной и катодной инверсионной вольтамперометрией нет принципиального различия несмотря на обычное использование этих терминов. Направление поляризации электрода зависит от свойств накопленного вещества. Анодная поляризация применяется для амальгам, осадков металлов и некоторых адсорбированных органических соединений, которые могут окисляться в диапазоне рабочих потенциалов электрода. Катодная поляризация применяется в случае оксидов металлов, солей ртути (I) и ртути (II), адсорбированных ионов комплексов металлов, восстанавливающихся органических молекул. Ионы металла, сконцентрированные с помощью ионообменников на угольно-пастовом электроде, сначала восстанавливаются до атомов при катодной поляризации и затем окисляются на последующей стадии. Выбор вольтамперометрического метода и материала электрода зависит от свойств и концентрации определяемого вещества. Например, ионы висмута или меди могут быть определены с помощью анодной инверсионной вольтамперометрии на ртутном капельном электроде [7], причем окисления ртути, которое может мешать при низких концентрациях ионов металлов, можно избежать при адсорбционном накоплении органических комплексов этих ионов, вслед за которым регистрируется катодная инверсионная вольтамперограмма.

Делись добром ;)