logo
Неразрушающий контроль. Акустическая дефектоскопия

3.3 Области применения методов

Дельта-метод также используют для получения дополнительной информации о дефектах при контроле сварных соединений. В варианте, показанном на рис. 5, в, излучают поперечные, а принимают продольные волны. Эффективная трансформация поперечных волн в продольные на дефекте произойдет, если угол падения на плоский дефект меньше третьего критического или если продольная волна возникает в результате рассеяния на дефекте. Для создания хорошего контакта приемного прямого преобразователя с поверхностью сварного соединения поверхность выпуклости шва зачищают. С помощью этого метода довольно точно определяют положение дефекта вдоль сварного шва, что очень важно при его автоматической регистрации.

Эхо-теневой метод также применяют при контроле сварных соединений. При автоматическом контроле преобразователи, располагаемые по обе стороны от шва, принимают как отраженные, так и прошедшие сигналы. Последние используются для контроля качества акустического контакта и обнаружения дефектов, ориентированных таким образом, что эхо-сигналы от них очень слабы.

Контроль теневым и эхо-сквозным методами возможен только при двустороннем доступе к изделию. Эти методы применяют для автоматического контроля изделий простой формы (например листов) в иммерсионном варианте. Перемещение листа вверх и вниз между преобразователями в иммерсионной ванне (рис. 4, а, в) не изменяет времени прохождения сигналов от излучателя к приемнику, что существенно упрощает конструкцию установки. Теневым методом выявляют более крупные дефекты, чем эхо- и эхо-сквозным методами, в связи с большим влиянием помех.

Теневой метод применяют также для контроля изделий с боль- большим уровнем структурных реверберации, т. е. помех, обусловленных отражением ультразвука от структурных неоднородности, крупных зерен. Сквозной сигнал попадает на приемник раньше, чем структурные реверберации, что позволяет его зарегистрировать на фоне помех. При контроле тонких изделий с очень высоким уровнем структурных помех более мелкие дефекты выявляют временным теневым методом. Теневой и временной теневой методы позволяют обнаруживать крупные дефекты в материалах, где контроль другими акустическими методами невозможен: крупнозернистой аустенитной стали, сером чугуне, бетоне, огнеупорном кирпиче. Теневой метод применяют вместо эхо-метода при исследовании физико-механических свойств материалов с большими коэффициентами затухания и рассеяния акустических волн, например, при контроле прочности бетона по скорости ультразвука. Для этой цели применяют не только теневой метод, но и (в более общем виде) метод прохождения. Например, излучатель и приемник располагают с одной стороны изделия на одной поверхности и измеряют время и амплитуду сквозного сигнала головной или поверхностной волны.

Локальный метод вынужденных колебаний применяют для измерения малых толщин при одностороннем доступе. Контактный резонансный толщиномер, принцип действия которого показан на рис. 7, в. В настоящее время для ручного контроля применяют импульсные толщиномеры. Для автоматического измерения толщины стенок труб выпускают иммерсионные резонансные толщиномеры. Некоторыми преимуществами перед таким способом измерения толщины обладает локальный метод свободных колебаний (метод предеф). Главное преимущество заключается в возможности изменения угла падения ультразвука на трубу присохранении точности измерений. Это упрощает конструкцию протяжного устройства.

Интегральный метод вынужденных колебаний применяют для определения модуля упругости материала по резонансным частотам продольных, изгибных или крутильных колебаний образцов простой геометрической формы, вырезанных из изделия, т. е. при разрушающих испытаниях. Последнее время этот метод используют для неразрушающего контроля небольших изделий: абразивных кругов, турбинных лопаток. Появление дефектов или изменение свойств материалов определяют по изменению спектра резонансных частот. Свойства, связанные с затуханием ультразвука (изменение структуры, появление мелких трещин), контролируют по изменению добротности колебательной системы. Интегральный метод свободных колебаний используют для про- проверки бандажей вагонных колес или стеклянной посуды по чистоте звука.

Реверберационный, импедансный, велосиметрический, акустико-топографический методы и локальный метод свободных колебаний используют в основном для контроля неметаллических и композиционных материалов. Схемы контроля клееных и паяных конструкций с при- применением реверберационного, импедансного методов и метода свободных колебаний показаны соответственно на рис. 5, г, 7, а, 7, в.

Так как вибрационно-диагностический и шумодиагностический методы, относящиеся к пассивным акустическим методам, служат для диагностирования работающих механизмов, их исследование выходит за рамки этой книги. Акустико-эмиссионный метод применяют в качестве средства исследования материалов, конструкций, контроля изделий (например при гидроиспытаниях) и диагностирования во время эксплуатации. Важными преимуществами этого метода перед другими является то, что он реагирует только на развивающиеся, действительно опасные дефекты, а также возможность проверки больших участков или даже всего изделия без сканирования его преобразователем. Основной его недостаток как средства контроля -- трудность выделения сигналов, вызываемых развивающимися дефектами, на фоне помех от кавитационных пузырьков в жидкости, подаваемой в объект при гидроиспытаниях, от трения в разъемных соединениях и т. д.