Методы оценки технического состояния газоперекачивающих агрегатов

диссертация

2.2.1 Вибрационная диагностика (динамический метод контроля)

При работе ГПА все его детали, узлы и агрегаты совершают вынужденные и резонансные колебания, которые зависят от величины и характера возмущающих сил, упругомассовых характеристик элементов конструкции, на которые, в свою очередь, влияет ряд конструктивных, технологических и эксплуатационных факторов. В общем случае вынужденные колебания систем ГПА имеют в основном механическое, аэродинамическое и электрическое (в случае использования в качестве привода компрессора электродвигателя) происхождение. К источникам колебаний механического происхождения относятся: неуравновешенные силы процесса, обусловленные силами трения (качения или скольжения) и взаимодействие элементов конструкции через упругие связи. Источники колебаний аэродинамического происхождения - переменные силы возмущающего потока газа в проточной части агрегата вследствие пульсации потока, неравномерность потока в радиальном и осевом направлениях, переменные импульсы, создаваемые вращающимися лопатками ротора, неравномерность сгорания топлива, вибрация трубопроводов и т.д.

В общем случае диагностика повреждений по параметрам вибрации конструкций осуществляется в три этапа [2, 5]:

1. Улавливание и регистрация сигналов вибраций, исходящих от работающего агрегата с помощью специальных датчиков. На этом этапе получают исходные данные, необходимые для последующего анализа вибрации (этап сбора информации).

2. Первичная обработка сигналов с помощью измерительных устройств, предварительный анализ сигналов, с выделением существенных и отбрасыванием несущественных данных.

3. Оценка состояния конструкции. Этап принятия решений, на котором экспериментальные данные сравнивают с эталонными, что позволяет оценить состояние системы и, при необходимости, принимать оперативные решения.

При исследовании вибраций в широком диапазоне датчик посылает сигналы, образованные всеми составляющими спектра колебаний, которые воспринимаются прибором, регистрирующим не только частоты следования сигналов, но и модуляции амплитуд. Это дает возможность не только с большой степенью точности установить наличие развивающегося дефекта или неисправности, но и проследить интенсивность его развития за определенный период времени. Чтобы установить элемент, подвергающийся износу, нужно выделить сигналы колебаний, полученных от каждого компонента агрегата. Таким образом, каждая деталь вибрирует на определенной дискретной частоте, с амплитудой, изменяющейся в зависимости от интенсивности развития дефекта. Будучи отображенной на виброграмме, эта амплитуда образует пик, выходящий за пределы «белого шума» (спектральный анализ в виде огибающей) или отдельные всплески (в случае линейчатого отображения спектра). Если эти пики или всплески с течением времени в последующих спектрах имеют тенденцию к возрастанию, то это означает, что дефект продолжает развиваться. Все методики расшифровки виброграмм, а, следовательно, и установления места нахождения и степени развития неисправности, базируются, в основном, на соотнесении найденных экспериментально или теоретически графических форм спектров вибрации со спектрами колебаний, полученными при исследовании объекта диагностики [2]. Однако, в настоящее время имеется довольно много проблем с расшифровкой спектров вибраций взаимозависимых неисправностей - то есть таких, когда сложно указать первопричину возникновения одной из них.

Поэтому весьма важны разработки новых методов, дающих возможность распознать по спектрам вибрации трудноразличимые неисправности.

Делись добром ;)