Автоматизация электропривода буровой установки

дипломная работа

2. Обзор и анализ систем электропривода и структур управления электроприводами

Для обеспечения требований предъявляемых к приводу необходимо провести анализ систем управления электроприводов. Рассмотрим системы электроприводов на базе асинхронного двигателя и двигателя постоянного тока.

Асинхронный электропривод нашел применение почти во всех областях современной промышленности, где не требуется регулировать скорость вращения вала двигателя. В силу своей простоты и надежности намного дешевле остальных типов приводов. Основная сложность внедрения асинхронного электропривода заключается в невозможности регулировать скорость вала в широком диапазоне скоростей в тех механизмах, где это необходимо. Существует три способа регулирования скорости вала асинхронного двигателя [5, с. 560]:

- изменением величины питающего напряжения;

- введением регулировочных реостатов для асинхронного двигателя с фазным ротором;

- использование преобразователей частоты (ПЧ);.

Первые два способа не удовлетворяют требованиям, предъявляемым к электроприводу маневровых лебедок. В настоящее время широко внедряется способ регулирования частоты вращения вала двигателя, путем изменения частоты питающего напряжения на обмотках статора машины (система электропривода - ПЧ-АД) [4]. Данная система электропривода позволяет выполнить все требования предъявляемые к электроприводу. В связи с тем, что нет необходимости поддерживать скорость на валу двигателя с большой точностью, возможно применение ПЧ со скалярным законом управления.

Для обоснования выбора системы электропривода проведем сравнительный анализ двух систем электроприводов (ПЧ-АД и ТП-Д) по различным критериям:

По конструктивному исполнению:

ТП-Д: конструкция двигателя значительно сложнее, больший расход меди, необходимо постоянно прочищать коллектор двигателя, возможен круговой огонь при перегрузках. Как следствие большие затраты на эксплуатацию.

ПЧ-АД: лишен всех предыдущих недостатков, но обладает большим моментом при разгоне и более мягкой механической характеристикой. Существенный недостаток - сложность в управлении.

По коэффициенту полезного действия:

ТП-Д: коэффициент полезного действия:

выпрямителя составит [5, с. 663]

двигателя постоянного тока [6]

привода

ПЧ-АД: коэффициент полезного действия:

двухзвенного преобразователя [11]

асинхронного двигателя привода [7, с. 277]

По влиянию на питающую сеть:

ТП-Д: в начале пуска имеет место значительный рост реактивной мощности, который может превышать значения в 3-4 раза больше мощности двигателя. При статической работе двигатель вносит искажения в питающую сеть. Коэффициент мощности меньше 1 и может достигать значений до 0,2 [8].

ПЧ-АД: Наводит в питающей сети гармоники. Коэффициент мощности около единицы.

По стоимости привода:

Стоимость непосредственно самого преобразователя напряжения сети, как в системе ТП-Д, так и в системе ПЧ-АД находится в одной ценовой категории. Для сравнения систем электроприводов будем использовать стоимость электрических машин.

Рассмотрим характеристики основных типов ПЧ.

а) НПЧ;

НПЧ предназначен для преобразования высокой частоты в низкую и состоит из 18 тиристоров, объединенных во встречно-параллельные группы (рис.2). В основе преобразователя лежит трехфазная нулевая схема выпрямления; каждая фаза преобразователя состоит из двух таких встречно включенных выпрямителей.

НПЧ различают с раздельным и совместным управлением.

При раздельном управлении управляющие импульсы должны подаваться на тиристоры одной из вентильных групп в соответствии с направлением тока в нагрузке. Для обеспечения раздельной работы применяется специальное логическое устройство, исключающее возможность прохождения тока в одной группе в то время, когда ток проходит в другой группе.

В преобразователях с совместной работой вентильных групп необходимо включение дополнительных реакторов, ограничивающих уравнительный ток между вентилями каждой группы, а углы управления положительной и отрицательной групп изменяются по определенному закону, исключающему появление постоянной составляющей уравнительного тока. Преобразователи с совместным управлением работой вентильных групп обладают большой установленной мощностью силовых элементов.

Рисунок 2.1 - ПЧ с непосредственной связью

Для получения выходного напряжения, близкого по форме к синусоидальному, необходимо изменять угол включения вентилей таким образом, чтобы среднее за полупериод питающей сети значение напряжения изменялось в течение полупериода выходного напряжения по синусоидальному закону. Регулирование частоты и напряжения на выходе преобразователя достигается изменением угла включения вентилей.

К достоинствам этого типа преобразователей можно отнести:

1) однократное преобразование энергии и, следовательно, высокий КПД (около 0,97--0,98);

2) возможность независимого регулирования амплитуды напряжения на выходе от частоты;

3) свободный обмен реактивной и активной энергией из сети к двигателю и обратно

4) отсутствие коммутирующих конденсаторов, так как коммутация тиристоров производится естественным путем (напряжением сети).

К недостаткам рассмотренного ПЧ относятся:

1) ограниченное регулирование выходной частоты (от 0 до 40 % частоты сети);

2) сравнительно большое число силовых вентилей и сложная схема управления ими;

3) невысокий коэффициент мощности -- максимальное значение на входе преобразователя около 0,8.

б) ПЧ со звеном постоянного тока;

Наиболее широкое применение в современных частотно регулируемых приводах находят преобрaзовaтели с явно выраженным звеном постоянного тока, принципиальная схема которого приведена на рис. 3. В преобрaзовaтелях этого клaссa используется двойное преобрaзовaние электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (УВ), фильтруется фильтром (C), сглaживaется, a затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобрaзовaние энергии приводит к снижению к.п.д. и к некоторому ухудшению мaссогaбaритных показателей по отношению к преобразователям с непосредственной связью.

Преобразователь с промежуточным звеном постоянного тока позволяет регулировать частоту как вверх, так и вниз от частоты питающей сети; он отличается высоким КПД (около 0,96), значительным быстродействием, сравнительно малыми габаритами и надежностью.

Рисунок 2.2 - Принципиальная схема ПЧ со звеном постоянного тока.

СФ - сетевой фильтр для отсечения высших гармоник; В - выпрямитель, обычно не регулируемый (в ПЧ первого поколения) для регулирования напряжения в звене постоянного тока; ДН и ДТ - датчики напряжения и тока; ТК - тормозни ключ; АИ - автономный инвертор, обычно ШИМ .; МФ - мотор-фильтр, уменьшение высших гармоник на двигатель; СУ - система управления.

Рисунок 2.3 - Принципиальная схема АИ

В качестве запираемых ключем в АИ могут использоваться GTO тиристоры или IGBT транзисторы.

Тиристор является полуупрaвляемым прибором: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорным преобрaзовaтеле частоты требуется сложная и громоздкая система управления.

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая неэнергоемкая система управления, сaмaя высокая рaбочaя чaстотa.

Вследствие этого преобрaзовaтели частоты на IGBT позволяют расширить диaпaзон управления скорости вращения двигателя, повысить быстродействие привода в целом.

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в преобрaзовaтелях частоты снижает уровень высших гармоник, хaрaктерных для тиристорных преобрaзовaтелей. Как следствие - меньшие добавочные потери в обмотках и мaгнитопроводе электродвигателя, уменьшение нaгревa электрической машины, снижение пульсаций момента и исключение так нaзывaемого «шaгaния» роторa в области малых частот. Снижаются потери в трaнсформaторaх, конденсаторных бaтaреях, увеличивaется их срок службы и изоляции проводов, уменьшaются количество ложных срaбaтывaний устройств защиты и погрешности индукционных измерительных приборов.

Изменением периода подачи управляючих импульсов на силовые ключи достигается изменение частоты напряжения подваемого на двигатель .

Рисунок 2.4 - Алгоритм подачи импульсов на транзисторы

При таком алгоритме в любой момент времени работают три силовых ключа (VT1, VT4, VT6)

Для работы двигателя необходимо с изменением частоты изменять и напряжение. Для этого его изменяют в звене постоянного тока либо используют ШИМ. При выборе соотношений между частотой и напряжением чаще всего исходят их условий сохранения перегрузочной способности.

Выбор преобразователя частоты производят исходя из условий:

; ;

Делись добром ;)