logo search
экзамен ибрагимова (10,11,12)

Очистка газов от двуокиси серы

Среди газообразных веществ, загрязняющих атмосферный воз­дух, одно из главных мест занимает сернистый ангидрид (дву­окись серы). В обычных условиях это бесцветный газ с резким раздражающим запахом.

Основным источником загрязнения атмосферного воздуха дву­окисью серы являются отходящие газы заводов цветной металлур­гии, выхлопные газы сернокислотных заводов и дымовые газы теплоэнергетических установок, сжигающих высокосернистое топ­ливо.

Существующие методы очистки газов от SO2 можно разделить на три группы: методы, основанные на окислении и нейтрализации SO2 без последующего ее выделения; циклические и комбинирован­ные методы.

К первой группе относятся методы очистки газов от SO2 с переработкой ее в серную кислоту или сернистокислые соли. К цик­лическим относятся методы, позволяющие извлекать SO2 из раз­бавленных газов при низкой температуре и выделять поглощен­ную SO2 при последующем нагреве поглотителя. При использо­вании комбинированных методов поглощение двуокиси серы про­изводится различными основаниями с последующим действием на них сильных кислот, в результате чего выделяется концентрирован­ная двуокись серы и соответствующие соли.

Выбор метода извлечения двуокиси серы зависит от концент­рации SO2, температуры, влажности, наличия в газе других при­месей, а также от специфических местных условий. При выборе метода необходимо учитывать масштабы производства, наличие местного сырья для приготовления поглотительных растворов, воз­можность реализации получаемых при очистке продуктов и т.

#11

В газообразных промышленных выбросах вредные примеси мож­но разделить на две группы:

а) взвешенные частицы (аэрозоли) твердых веществ — пыль, дым; жидкостей — туман

б) газооб­разные и парообразные вещества.

К аэрозолям относятся взвешен­ные твердые частицы неорганического и органического происхож­дения, а также взвешенные частицы жидкости (тумана). Пыль – это дисперсная малоустойчивая система, содержащая больше крупных частиц, чем дымы и туманы. Счетная концентрация (чис­ло частиц в 1 см3) мала по сравнению с дымами и туманами. Неорганическая пыль в промышленных газовых выбросах обра­зуется при горных разработках, переработке руд, металлов, мине­ральных солей и удобрений, строительных материалов, карбидов и других неорганических веществ. Промышленная пыль органи­ческого происхождения – это, например, угольная, древесная, тор­фяная, сланцевая, сажа и др. К дымам относятся аэродисперсные системы с малой скоростью осаждения под действием силы тяже­сти. Дымы образуются при сжигании топлива и его деструктив­ной переработке, а также в результате химических реакций, нап­ример при взаимодействии аммиака и хлороводорода, при окислении паров металлов в электрической дуге и т.д. Размеры частиц в дымах много меньше, чем в пыли и туманах, и состав­ляют от 5 мкм до субмикронных размеров, т.е. менее 0,1 мкм. Туманы состоят из капелек жидкости, образующихся при конден­сации паров или распылении жидкости. В промышленных выхло­пах туманы образуются главным образом из кислоты: серной, фосфорной и др. Вторая группа – газообразные и парообразные вещества, содержащиеся в промышленных газовых выхлопах, го­раздо более многочисленна. К ней относятся кислоты, галогены и галогенопроизводные, газообразные оксиды, альдегиды, кетоны, спирты, углеводороды, амины, нитросоединения, пары металлов, пиридины, меркаптаны и многие другие компоненты газообразных промышленных отходов.

Механическая очистка газов включает сухие и мок­рые методы. К сухим методам относятся:

гравитационное осаж­дение;

инерционное и центробежное пылеулавливание;

филь­трация.

В большинстве промышленных газоочистительных уста­новок комбинируется несколько приемов очистки от аэрозолей, причем конструкции очистных аппаратов весьма многочисленны.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40–100 мм мно­жество горизонтальных полок, разбивающих газовый поток на плоские струи. Производительность осадительных камер П = SwО, где S — площадь горизонтального сечения камеры, или общая площадь полок, м2; wO скорость осаждения частиц, м/с. Грави­тационное осаждение действенно лишь для крупных частиц диа­метром более 50-100 мкм, причем степень очистки составляет не .выше 40-50%. Метод пригоден лишь для предварительной, гру­бой очистки газов.

Инерционное осаждение основано на стремлении взве­шенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выхо­дя через щели и меняя при этом направление движения, скорость газа на входе в аппарат составляет 10-15 м/с. Гидравлическое сопротивление аппарата 100 - 400 Па (10 - 40 мм вод. ст.). Части­цы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для гру­бой очистки газа. Помимо малой эффективности недостаток этого метода – быстрое истирание или забивание щелей.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очи­щаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Цикло­ны наиболее часто применяют в промышленности для осаждения твердых аэрозолей. Газовый поток подается в цилиндрическую часть циклона тангенциально, описывает спираль по направлению к дну конической части и затем устремляется вверх через турбулизованное ядро потока у оси циклона на выход. Циклоны харак­теризуются высокой производительностью по газу, простотой уст­ройства, надежностью в работе. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м3/ч), степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 530 мкм степень очистки снижается до 80%, а при d = 25 мкм она составляет менее 40%.

Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Наиболее часто для фильтрации применяют специально изготовленные волокнистые материалы — стекловолок­но, шерсть или хлопок с асбестом, асбоцеллюлозу. В зависимости от фильтрующего материала различают тканевые фильтры (в том числе рукавные), волокнистые, из зернистых материалов (керами­ка, металлокерамика, пористые пластмассы). Тканевые филь­тры, чаще всего рукавные, применяются при температуре очища­емого газа не выше 60-65°С. В зависимости от гранулометрического состава пылей и начальной запыленности степень очистки составляет 85-99%. Гидравлическое сопротивление фильтра Р около 1000 Па; расход энергии ~ 1 кВт*ч на 1000 м3 очищаемого газа. Для непрерывной очистки ткани продувают воздушными струями, которые создаются различными устройствами – сопла­ми, расположенными против каждого рукава, движущимися на­ружными продувочными кольцами и др. Сейчас применяют авто­матическое управление рукавными фильтрами с продувкой их импульсами сжатого воздуха.

Фильтрация – весьма распространенный прием тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость обо­рудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание филь­трующего материала пылью.