Формализация. Аксиомы
Формализация - особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков).
Этот метод познания заключается в построении абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах и отношениях предметов.
Таким путем создается обобщенная знаковая модель некоторой предметной области, позволяющая обнаружить структуру различных явлений и процессов при отвлечении от качественных характеристик последних. Вывод одних формул из других по строгим правилам логики представляет формальное исследование основных характеристик структуры различных, порой весьма далеких по своей природе явлений.
Примером формализации являются широко используемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания.
Из курса математической логики известно, что для построения формальной системы необходимо задать алфавит, задать правила образования формул, задать правила вывода одних формул из других. Важным достоинством формальной системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем, оперируя знаками. Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации.
Следует заметить, что формализованные искусственные языки не обладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойственная естественным языкам. Они характеризуются точно построенным синтаксисом и однозначной семантикой.
Формализация широко используется в химии, логике и математике. В середине XIX в. сформировалась математическая логика, которая во второй половине XX столетия сыграла важную роль в развитии кибернетики, в появлении электронных вычислительных машин, в решении задач автоматизации производства и т. д.
Существует аксиоматический метод познания. При таком подходе задается набор исходных положений, не требующих доказательства, которые называются аксиомами, или постулатами. Затем из них по определенным правилам строится система выводных предложений. Совокупность исходных аксиом и выведенных на их основе предложений образует аксиоматически построенную теорию. Число аксиом варьируется в широких границах: от двух-трех до нескольких десятков. К аксиомам и выводам из них предъявляются требования непротиворечивости, независимости и полноты. Следование определенным, четко зафиксированным правилам вывода позволяет упорядочить процесс рассуждения при развертывании аксиоматической системы, сделать это рассуждение более строгим и корректным.
Чтобы задать аксиоматической систему, требуется некоторый язык – алфавит. Если формализация имеет место, то аксиоматическая система является формальной, а положения системы приобретают характер формул. Получаемые в результате вывода формулы называются теоремами, а используемые при этом аргументы — доказательствами теорем.
- Методы научного познания Содержание
- Введение
- Методы эмпирического познания Наблюдение
- Экперимент
- Измерение и сравнение
- Методы теоретического познания Общая характеристика теоретических методов
- Абстрагирование
- Идеализация. Мысленный эксперимент
- Формализация. Аксиомы
- Метод гипотезы
- Смежные методы Анализ и синтез. Индукция и дедукция. Аналогия
- Моделирование
- Критерии естественно-научного познания
- Заключение
- Список литературы