logo search
ОПД_Полн

5. Анализ и оптимизация сетевого графика

После расчета параметров сетевого графика производится его анализ, и в нужных случаях, его оптимизация. Задачами анализа является пересмотр структуры сети с целью определения возможности увеличения числа параллельно выполняемых работ, определение коэффициентов напряженности работ, что позволяет наряду с расчетом резервов времени работ и путей, распределить все работы по зонам (критическая, подкритическая и резервная). Важной задачей анализа сетевого графика является определение вероятности свершения завершающего события в заданный срок.

Заданный срок свершения завершающего события (т. е. директивный срок выполнения проекта) Тд может отличаться от расчетного Ткр, полученного на основе критического пути, но несмотря на это (в силу того, что ожидаемые продолжительности работ определялись как случайные величины) сохраняется определенная вероятность, что завершающее событие наступит в заданный директивный срок или раньше его. При определении этой вероятности принимается, что продолжительность выполнения проекта (т. е. величина критического пути) является случайной величиной, подчиняющейся нормальному закону распределения.

Аналитическая вероятность того, что завершающее событие наступит в заданный (директивный) срок или ранее него, определяется следующим образом:

,

где - соответствующее значение функции Ф(Z), взятое из таблицы нормального распределения;

Z - аргумент нормальной функции распределения вероятности.

Среднее квадратичное отклонение срока наступления завершающего события определяется по формуле:

,

где ijкр - последовательность работ, лежащих на критическом пути;

К - количество работ, составляющих критический путь;

- дисперсия работы, лежащей на критическом пути.

Пример:

Для графика, изображенного на рис. 1, определить вероятность выполнения проекта в заданный директивный срок, равный 8 ед. времени. Ранее было определено, что расчетный срок выполнения проекта составляет Ткр = 9 ед. Предположим, что также определены и дисперсии работ, составляющих критический путь, пусть например:

тогда

и

Пользуясь таблицей значений функции Лапласа по величине Z = - 1,7 (см. приложение 4), находим искомую вероятность РК » 0,045.

Вывод:

При планировании в системах СПУ принято, что если:

0,85 < РК < 0,65 - то это считается границами допустимого риска (т. е. считается нормальным положением);

при РК < 0,85 - то считается, что опасность нарушения заданного срока очень большая (неприемлема) и необходимо в этом случае и произвести повторное планирование с перераспределением ресурсов с целью минимизации срока выполнения проекта;

при РК > 0,65 - считается вероятность слишком велика, т. е. на работах критического пути имеются избыточные ресурсы. В этом случае тоже производят повторное планирование с целью сокращения потребных ресурсов.

При невозможности достижения удовлетворительного значения РК может потребоваться изменение заданного срока выполнения проекта. Эта задача решается как обратная рассмотренной выше. Задаваясь желаемой величиной вероятности РК свершения завершающего события в заданный срок, можно из вышеприведенного уравнения определить значение функции , и, зная величины Ткр и , определить величину Тд.

После анализа сетевого графика в необходимых случаях проводится его оптимизация. Она необходима для обеспечения большей надежности свершения завершающего события в заданный срок, для выравнивания загрузки работников, лучшего распределения ресурсов и т. д. Оптимизация графика во времени (т. е. достижение минимального срока выполнения проекта при заданных ресурсах) производится путем переброски ресурсов с некритических путей, имеющих резервы времени, на критический путь, что приводит к сокращению его продолжительности. В пределе продолжительности всех полных путей могут быть равны и являются критическими и тогда все работы ведутся с одинаковым напряжением, а общий срок выполнения проекта существенно сократится.