Экономические основы технологии производства пластмасс

курсовая работа

2.1 Основные способы производства пластмасс

Литье под давлением

Это наиболее популярная технология переработки термопластичных материалов. Производство деталей осуществляется путем впрыска расплава пластмассового сырья под давлением в пресс-форму с последующим охлаждением.

Методом литья пластмасс осуществляют производство более тридцати процентов от общего объема изделий из пластмасс. Более пятидесяти процентов всего оборудования, которое применяется для переработки пластмасс, ориентировано для литья под давлением. Характерное отличие литья под давлением от остальных технологий - это высокая производительность. Данным способом изготавливаются изделия сложной формы, поэтому идеально подходит для массового производства пластмассовых деталей, важным требованием к которым является не только объемы производства, но и точные геометрические и/или оптические характеристики.

Для начала производства деталей с использованием данной технологии необходимо изготовление пресс-формы. Эта оснастка является достаточно сложной конструкцией, что обуславливает ее высокую стоимость и продолжительный срок ее изготовления (до 2-3 месяцев). В зависимости от конфигурации будущего изделия пресс-форма может быть шиберная или бесшиберная. Наиболее важная характеристика пресс-формы - это ее ресурс, который, при использовании определенных марок стали, может доходить до 1 000 000 смыканий.

Для данной технологии используется сырье в форме пластиковых гранул, обладающих широким диапазоном физических и механических свойств.

Говоря о достоинствах данной технологии прежде всего нужно сказать о таком, как высокая точность получаемых изделий. Использование данной технологии позволяет получать большие тираж и изделий и относительная дешевизна единицы продукции.

Недостатком является высокая стоимость технологической оснастки - пресс-формы и достаточно продолжительный срок ее производства.

Экструзия (формование выдавливанием)

Это технология получения пластмассовых изделий, имеющая свои особенности.

Производство пластмассовых изделий осуществляется путем предварительной термической обработки пластмассового сырья и последующим продавливанием расплавленной пластмассы через формующее отверстие (экструзионную головку - фильеру) и дальнейшим охлаждением полученного изделия. С помощью данной технологии получают изделия с поперечным сечением нужной формы.

Экструзия, так же как и литье пластмасс под давлением, является достаточно популярным методом изготовления изделий из пластика. Практически все существующие виды пластмасс могут перерабатываться методом экструзии.

Как правило, для экструзии пластиков применяются различные виды экструдеров. Это могут быть шнековые, червячные или дисковые экструдеры. Экструзионное производство помимо самого экструдера должно быть оснащено определенным вспомогательным оборудованием, в совокупности составляющие экструзионную линию.

Если Вам необходимо изготовление изделий из пластмасс, которые по всей своей длине имеют одинаковое поперечное сечение, то наиболее оптимальным для Вас будет использование технологии экструзии.

Вакуумная формовка

С помощью вакуумной формовки изготавливают различные изделия, такие, например, как блистерные упаковки. В данной технологии выделяют 2 основных этапа. Первый этап - это изготовление технологической оснастки. Второй - формовка полимерной пленки. Рассмотрим каждый этап подробнее.

Первый этап - изготовление оснастки. Технологическая оснастка представляет собой матрицу. Собственно на этой матрице и происходит вакуумная формовка. В зависимости от требований к проектируемому пластмассовому изделию, матрица может быть изготовлена из различных материалов. Это может быть дюралюминий, стеклопластик, древесноволокнистая плита. Окончательная стоимость данного этапа будет зависеть от затрат на расходные материалы, а также сильно зависит от конфигурации будущего изделия из пластика и соответственно сложности оснастки.

Второй этап - собственно сама вакуумная формовка. Схематически этот процесс выглядит так: полимерные листы помещаются в вакуум-формовочную машину, которая нагревает его до температуры начала плавления пластика, из которого выполнен лист. После нагрева листа происходит смыкание формовочной камеры, в которой находится изготовленная на первом этапе оснастка. В процессе вакуумной формовки разогретый лист облегает матрицу. Затем происходит обработка краев получившегося изделия, такое как обрезка или вырубка.

Наиболее часто в вакуумной формовке применяются такие полимерные листы как полистирол, полиэтилен, поливинилхлорид.

Вакуумная формовка является более доступной технологией изготовления полимерных изделий по сравнению с литьем пластмасс под давлением.

Механическая обработка

Пластические массы, по сравнению с металлами, обладают повышенной упругой деформацией, вследствие чего при обработке пластмасс применяют более высокие давления, чем при обработке металлов. Применять какую-либо смазку, как правило, не рекомендуют; только в некоторых случаях при окончательной обработке допускают применение минерального масла. Охлаждать изделие и инструмент следует струей воздуха. Пластические массы более хрупки, чем металлы, поэтому при обработке пластмасс режущими инструментами надо применить высокие скорости резания и уменьшать подачу. Износ инструмента при обработке пластмасс значительно больше, чем при обработке металлов, почему необходимо применять инструмент из высокоуглеродистой или быстрорежущей стали или же из твердых сплавов. Лезвия режущих инструментов надо затачивать, по возможности, более остро, пользуясь для этого мелкозернистыми кругами.

Пластмасса может быть обработана на токарном станке, может фрезероваться. Для распиливания могут применяться ленточные пилы, дисковые пилы и карборундовые круги.

Ротационное формирование

Считается, что ротационное формование полимеров началось в конце 30-х годов прошлого века с появлением жидкого поливинилхлорида. Во время второй мировой войны по этой технологии кроме традиционных пляжных мячей и мягких игрушек стали производить колбы шприцов, мягкие бутылки, эластичные баллоны и воздушные подушки. Первое оборудование, применявшееся для ротационного формования, было весьма примитивным. И только в конце 50-х годов с появлением порошкового полиэтилена и установок, на которых обогрев форм производился при помощи газовых горелок, началось бурное развитие.

В основе технологии ротационного формования лежит достаточно простой принцип. Процесс начинается с загрузки определенного количества полимера (порошок, гранулы или жидкость) в полую форму, состоящую из двух стыкующихся частей. Затем ее вращают и/или раскачивают относительно двух осей на небольших скоростях, при этом также подвергают нагреву, в результате чего полимер налипает на внутреннюю поверхность и образует плотный однородный слой. На этапе охлаждения продолжается вращение, за счет чего изделие приобретает заданную форму. Когда стенка изготавливаемого продукта приобретает необходимую жесткость, вращение и охлаждение прекращаются и его удаляют. После этого форму можно использовать для повторения всего цикла изготовления. В отличие от других технологий при ротационном формовании давление в форме практически не отличается от атмосферного, и таким образом изделие не имеет остаточных напряжений, связанных с давлением.

Сварка

Соединение пластмасс между собой может осуществляться как механическим путем (с помощью болтов, заклепок, склеиванием, растворением с последующим высыханием), так и при помощи сварки. Из перечисленных способов соединения только при помощи сварки можно получить соединение без инородных материалов, а также соединение, которое по свойствам и составу будет максимально приближено к основному материалу. Поэтому сварка пластмасс нашла применение при изготовлении конструкций, к которым предъявляются повышенные требования к герметичности, прочности и другим свойствам.

Процесс сварки пластмасс состоит в образовании соединения за счет контакта нагретых соединяемых поверхностей. Он может происходить при определенных условиях:

1. Повышенная температура. Её величина должна достигать температуры вязкотекучего состояния.

2. Плотный контакт свариваемых поверхностей.

3. Оптимальное время сварки -- время выдержки.

Также следует отметить, что температурный коэффициент линейного расширения пластмасс в несколько раз больше, чем у металлов, поэтому в процессе сварки и охлаждения возникают остаточные напряжения и деформации, которые снижают прочность сварных соединений пластмасс. На прочность сварных соединений пластмасс большое влияние оказывают химический состав, ориентация макромолекул, температура окружающей среды и другие факторы.

Применяются различные виды сварки пластмасс:

1. Сваркагазовым теплоносителем с присадкой и без присадки

2. Сварка экструдируемой присадкой

3. Контактно-тепловая сварка оплавлением

4. Контактно-тепловая сварка проплавлением

5. Сварка в электрическом поле высокой частоты

6. Сварка термопластов ультразвуком

7. Сварка пластмасс трением

8. Сварка пластмасс излучением

9. Химическая сварка пластмасс

Как и при сварке металлов, при сварке пластмасс следует стремиться к тому, чтобы материал сварного шва и околошовной зоны по механическим и физическим свойствам мало отличался от основного материала. Сварка термопластов плавлением, как и другие методы их переработки, основана на переводе полимера сначала в высокоэластическое, а затем в вязкотекучее состояние и возможна лишь в том случае, если свариваемые поверхности материалов (или деталей) могут быть переведены в состояние вязкого расплава. При этом переход полимера в вязкотекучее состояние не должен сопровождаться разложением материала термодеструкцией. При сварке многих пластмасс выделяются вредные пары и газы. Для каждого газа имеется строго определенная предельно доступная его концентрация в воздухе. Например, для диоксида углерода ПДК равна 20, для ацетона-- 200, а для этилового спирта-- 1000 мг/мі.

Делись добром ;)