logo
Металлургия алюминия

5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ АЛЮМИНИЯ

Алюминий получают путем электролиза глинозема, растворенного в расплавленном электролизе, основным компонентом которого является криолит. В чистом криолите Na3AlF6(3NaF . AlF3) отношение NaF: AlF3 равно 3, для экономии электроэнергии необходимо при электролизе иметь это отношение в пределах 2,6-2,8, поэтому к криолиту добавляют фтористый алюминий AlF3. Кроме того, для снижения температуры плавления в электролит добавляют немного CaF2, MgF2 и иногда NaCl. Содержание основных компонентов в промышленном электролите находится в следующих пределах, %: Na3AlF6 75-90; AlF3 5-12; MgF2 2-5; CaF2 2-4; Al2O3 2-10.

Электролизная ванна или электролизер, где проводят электролиз, имеет в плане прямоугольную форму. Кожух из стальных листов охватывает стены ванны, а у больших ванн выполнен с днищем. Внутри имеется слой шамота и далее стены выложены угольными плитами, а под образован подовыми угольными блоками. Ванна глубиной 0,5-0,6 м заполнен электролитом и находящимся под ним слоем жидкого алюминия.

Угольный анод подвешен на стальных стержнях так, что его нижний конец погружен в электролит, через стержни к аноду подается ток от шин.

Мощность электролизера, определяемая силой подводимого к ней тока, изменяется от 30 кА у ванн малой мощности до 250 кА у ванн большой мощности.

Электролизные ванны с предварительно оббоженными анодами имеют анодный узел, составленный из нескольких угольных или графитированных блоков, расположенных в два ряда. В каждом блоке закреплены четыре стальных ниппеля, соединенных со штангой; это устройство служит для подвода тока и для подвески блока. Сгоревшие блоки заменяют новыми. Над ванной установлен газоулавливаающий короб.

Использование обожженных анодов позволило увеличить единичную мощность ванн и сильно сократить выделение вредных канцерогенных веществ, которые образуются при коксований пека самообжигающихся электронов.

Электронные ванны размещают в цехе в ряд - по несколько десятков ванн в ряду.

Электролиз ведут при напряжении 4-4,3 В и ,как отмечалось, при удельной плотности тока, походящего через анод, равной 0,65-1,0 А /см2 .Толщина слоя электролита в ванне составляет 150-250 мм. Температуру ванны поддерживают в пределах 950-970 0С за счет тепла, выделяющегося при прохождений постоянного тока через электролит. Такие температуры имеют место под анодом, а на границе с воздухом образуется корка затвердевшего электролита, а у стен ванны - затвердевший слой электролита (гарнисаж).

Необходимая температура ванны, т. е выделение в слое электролита необходимого количества тепла, обеспечивается при определенном электросопротивлении слоя электролита. Такого электросопротивления достигают, поддерживая в заданных пределах состав электролита и толщину его токопроводящего слоя, т. е. расстояния между анодом и слоем жидкого алюминия в пределах 40-60 мм.

При приложении напряжения к катоду и аноду составляющие жидкого электролита подвергаются электролитической диссоциации, и расплав состоит из многочисленных катионов и анионов. Состав электролита подобран так, что в соответствии со значениями потенциалов разряда на электродах могут разряжаться только катионы Al3+ и анионы O2-, образующиеся при диссоциации Al2O3 в электролите.

Разряжающийся на катоде алюминий накапливается на подине ванны под слоем электролита. Выделяющийся на аноде с образованием газов CO и CO2, т. е. при этом окисляется низ анода, в связи с чем анод периодически опускают. Газы CO и CO2 выходят из-под анодов вдоль их боковых поверхностей, они содержат выделяющиеся из электролита токсичные фтористые соединения и глиноземную пыль; эти газы улавливают и очищают от пыли и фтористых соединений.

По ходу процесса в ванны периодически загружают глинозем; контролируют состав электролита, вводя корректирующие добавки; с помощью регуляторов поддерживают оптимальное расстояние между анодами и жидким алюминием. Глинозем загружают в ванны сверху, пробирая для этого корку спекшегося электролита с помощью передвигающихся вдоль ванн машин.

Жидкий алюминий извлекают из ванн один раз в сутки или через 2-3 сут с помощью вакуум-ковшей. Вакуум-ковш представляет собой вмещающую 1,5-5 т алюминия футерованную шамотом емкость, в которой создается разряжение ~ 70 кПа. Соединенную с патрубком ковша заборную трубку погружают сверху в слой жидкого алюминия засасывается в ковш.

Выделяющиеся анодные газы вначале направляют в горелки, где сжигают CO и возгоны смолы, а затем в газоочистку, где улавливают пыль и фтористые соединения.

Производительность современных электролизных ванн составляет 500-1200 кг алюминия в сутки. Для получения 1 т алюминия расходуется ~ 1,95 т глинозема, ~ 25 кг криолита, 25 кг фтористого алюминия, 0,5-0,6 т анодной массы, 14-16 МВт , ч электроэнергии. [2], [1]